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Agenda

• HP-MPI
• Debugging
• Oprofile
• SFS



June 6, 2007  

  HP-MPI
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  HP-MPI 2.2  and XC 3.0

• Usability 
– Xc jobs, srun, lustre, ssh, 32 bit mode,

• Debuggability and Profiling 
– Message Profiling
– Message validation Library

• Communication and Cluster Health
– MPI Communication
– Interconnect health check

• Scaleout
– rank to core binding
– Startup, message buffers, licensing

• Performance Improvements
– InfiniBand, Ethernet
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XC  Job Control

LSF, SLURM, HP-MPI are tightly coupled, built to interact with a remote login program.

LSF determine WHEN the job will run LSF talks with SLURM to determine WHICH resources will be used. 

SLURM - Determines WHERE the job runs. It controls things like which host each rank runs on. SLURM also starts 
the executables on each host as requested by HP-MPI's mpirun 

HP-MPI - Determines HOW the job runs, part of the application, handles communication. Can also pinpoint the 
processor on which each rank runs.

SSH/rsh - The KEY that opens up remote hosts. 

LSF
Job queueing system

SLURM
cluster management 

& job scheduling

HP-MPI
Message Passing

ssh remote login

Key

When HowWhere
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HP-MPI mpirun

Useful options:

-prot  Prints the communication protocol
-np # - Number of processors to use
-h host  - Set host to use
-e <var>[=<val>] - Set environment variable
-d - Debug mode
-v - Verbose
-i file - Write profile of MPI functions
-T - Prints user and system times for each MPI rank.
-srun - Use SLURM
-mpi32 - Use 32-bit interconnect libraries on X86-64
-mpi64 - Use 64-bit interconnect libraries on X86-64 (default)
-f appfile - Parallelism directed from instructions in appfile
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SLURM srun utility

srun – SLURM utility to run parallel jobs
srun usage on XC:

− hpmpi option

• Use as: -srun options exe args

− hpmpi implied srun mode

• Use as: export MPI_USESRUN 1 

• Set options by: export MPI_SRUNOPTIONS options
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32- and 64-bit selection
• Options have been added to indicate the bitness 

of the application so the proper interconnect 
library can be invoked.

• Use –mpi32 or –mpi64 on the mpirun command 
line for AMD64 and EM64T.

• Default is –mpi64.
• Mellanox only provides a 64-bit IB driver. 

−32-bit apps are not supported for IB on AMD64 & 
EM64T systems.
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HP-MPI Parallel Compiler Options

Useful options:

-mpi32 - build 32-bit 

Useful environment variables:

setenv MPI_CC cc - set C compiler

setenv MPI_CXX C++ - set C++ compiler 

setenv MPI_F90 f90 - set Fortran compiler

setenv MPI_ROOT dir - useful when MPI not 
installed in /opt/[hpmpi|mpi]
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Problematic Compiler Options

INTEL             PGI                     Description

-i8

-static

If you compile with this, be sure to link with 
it.  
Intel and AMD math libraries do not support 
Integer*8.

-i8

Link static – does not allow HP-MPI to 
determine interconnect -Bstatic
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  HP-MPI Debugging
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Debugging Scripts: Use hello_world Test case

#include <stdio.h>
#include <mpi.h>
main(int argc,char ** argv)
 {
        int     rank, size, len;
        char  name[MPI_MAX_PROCESSOR_NAME];
 
        MPI_Init(&argc, &argv);
        MPI_Comm_rank(MPI_COMM_WORLD, &rank);
        MPI_Comm_size(MPI_COMM_WORLD, &size);
        MPI_Get_processor_name(name, &len);
        printf ("Hello world! I'm %d of %d on %s\n", rank, size, name);
        MPI_Finalize();
        exit(0);
}

 



June 6, 2007  

How to debug HP-MPI applications with 
a single-process debugger
• export MPI_DEBUG_CONT=1
• Set the MPI_FLAGS environment variable to choose debugger.  Values 

are:
– eadb – Start under adb
– exdb – Start under xdb
– edde – Start under dde
– ewdb – Start under wdb
– egdb – Start under gdb 

• Set DISPLAY to point to your console  with ssh -X
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Attaching Debuggers to HP-MPI Applications

• HP-MPI conceptually creates processes in MPI_Init, and 
each process instantiates a debugger session.

• Each debugger session in turn attaches to the process that 
created it. 

• HP-MPI provides MPI_DEBUG_CONT to control the 
point at which debugger attachment occurs via 
breakpoint. 

• MPI_DEBUG_CONT is a variable that HP-MPI uses to 
temporarily spin the processes awaiting the user  to allow 
execution to proceed via debugger commands. 

• By default, MPI_DEBUG_CONT is set to 0 and you 
must set it to 1 to allow the debug session to continue past 
this ‘spin barrier’ in MPI_Init.
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Debugging HP-MPI apps cont:

•  
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Debugging HP-MPI apps cont:

•  
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  HP-MPI Profiling
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Profiling

•Instrumentation
−Lightweight method for cumulative runtime statistics

−Profiles for applications linked with standard HP-MPI 
library

−Profiles for applications linked with the thread-
compliant library
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HP-MPI instrumentation profile:

 -i <myfile>[:opt] - produces a rank by rank summary of where 
MPI spends its time and places result in file name myfile.trace

bsub –I –n4 mpirun –i myfile  -srun ./a.out
   
 Application Summary by Rank (second):

 Rank       Proc CPU Time           User Portion               System Portion
 -----------------------------------------------------------------------------
   0            0.040000          0.030000( 75.00%)          0.010000( 25.00%)
   1            0.050000          0.040000( 80.00%)          0.010000( 20.00%)
   2            0.050000          0.040000( 80.00%)          0.010000( 20.00%)
   3            0.050000          0.040000( 80.00%)          0.010000( 20.00%)
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HP-MPI instrumentation continued
 
• Routine Summary by Rank:

 Rank   Routine        Statistic         Calls    Overhead(ms)    Blocking(ms)
 -----------------------------------------------------------------------------
    0
        MPI_Bcast                            4        7.127285        0.000000
                           min                            0.033140        0.000000
                           max                           5.244017        0.000000
                           avg                            1.781821        0.000000
        MPI_Finalize                         1       0.034094        0.000000
        MPI_Init                                1 1080.793858        0.000000
        MPI_Recv                        2010       3.236055        0.000000
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HP-MPI instrumentation continued
 
•  Message Summary by Rank Pair:

 SRank    DRank      Messages         (minsize,maxsize)/[bin]       Totalbytes
 -----------------------------------------------------------------------------
    0
             1           1005                         (0, 0)                  0 
                          1005                       [0..64]                  0

             3           1005                         (0, 0)                  0
                          1005                       [0..64]                  0
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Diagnostic Library

−Advanced run time error checking and analysis
−Message signature analysis detects type mismatches
−Object-space corruption detects attempts to write into 

objects
−Detects operations that causes MPI to write to a user 

buffer more than once
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HP-MPI Diagnostic Library

• Link with –ldmpi to enable diagnostic library, or use
• ld_preload on an existing pre-linked application (shared 

libs)
• This will dynamically insert diagnostic lib

• mpirun -e LD_PRELOAD=libdmpi.so:libmpi.so  -srun ./a.out

• This will also dump message formats (could be REALLY Large)
• mpirun -e LD_PRELOAD=libdmpi.so:libmpi.so -e 

MPI_DLIB_FLAGS=dump:foof -srun ./a.out

• See “MPI_DLIB_FLAGS” on page 46 of Users Guide or 
man mpienv for more information on controlling features.



June 6, 2007  

  Oprofile
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OPROFILE Profiling example
• oprofile configured in XC, but not enabled
• Need to be root to enable on a node

# opcontrol --no-vmlinux
# opcontrol --start
Using default event: GLOBAL_POWER_EVENTS:100000:1:1:1
Using 2.6+ OProfile kernel interface.
Using log file /var/lib/oprofile/oprofiled.log
Daemon started.
Profiler running.

Clear out old performance data.
# opcontrol --reset  
Signalling daemon... done
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OPROFILE Profiling example cont.
• Run your application
  # bsub -I -n4 -ext "SLURM[nodelist=xcg14]" 

./run_linux_amd_intel 4 121 test

• find the name of your executable 

# opreport --long-filenames

• Generate a report for that executable image
# opreport -l 
/mlibscratch/lieb/mpi2005.kit23/benchspec/MPI2005/121.pop2/run/r
un_base_test_intel.0001/pop2_base.intel | more



June 6, 2007  

OPROFILE Profiling example cont.



June 6, 2007  

OPROFILE Profiling kernel symbols

The actual version of the rpm may change

• The vmlinux file is contained in the kernel debug 
RPM:
– kernel-debuginfo-2.6.9-11.4hp.XC.x86_64.rpm

• Kernel symbols file is installed in:
– /usr/lib/debug/lib/modules/2.6.9-11.4hp.XCsmp/vmlinux

•  opcontrol --vmlinux=\
– /usr/lib/debug/lib/modules/2.6.9-11.4hp.XCsmp/vmlinux 
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  HP-MPI Communication
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HP-MPI Communication
Movement of data depends on relative location of 

destination and interconnect.  Paths are:

• Communication within a Node (shared memory)

• Communication from Node to Node over TCP/IP 

• Communication from Node to Node over high speed 
interconnects InfiniBand, Quadrics, Myrinet
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HP-MPI Communication within a Node

To Send data from Core 1 to Core 4:

Core 1 -> Core 1 Local Memory

Core 1 Local Memory* -> System Shared Memory**

System Shared Memory -> Core 4 Local Memory

Core 4 Local Memory -> Core 4
*The operating system makes Local Memory available to a single process

**The operating system makes Shared Memory available to multiple processes

Memory

Core 1 Core 2

Memory

Core 3 Core 4

Bus

data
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HP-MPI Communication to another Node 
via other Interconnects

To Send data from Core 1, Node 1 to Core 1, Node 2:

Core 1, Node 1 -> Core 1, Node 1 Local Memory

Core 1, Node 1 Local Memory -> Node 1 Shared Memory

Node 1 Shared Memory -> Interconnect

Interconnect -> Node 2 Shared Memory

Node 2 Shared Memory -> Core 1, Node 2 Local Memory

Core 1, Node 2 Local Memory -> Core 1, Node 2

Interconnect

Memory

Core 1 Core 2

Memory

Core 3 Core 4

RDMA

Memory

Core 1 Core 2

Memory

Core 3 Core 4

RDMA

data
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X86-64: 32-bit versus 64-bit Interconnect 
Support

• Supported 64-bit interconnects:
• TCP/IP

• GigE

• InfiniBand

• Elan

• Myrinet

• Supported 32-bit interconnects:
• TCP/IP

• Myrinet

• InfiniBand (but not 32 bit mode on 64 bit architectures)
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Cluster Interconnect Status
• ‘-prot’ displays the protocol in use 

− possibilities: VAPI SHM UDPL GM MX IT ELAN
− mpirun –prot –srun ./hello.x

• Measure bandwidth between pairs of nodes using 
ping_pong_ring.c
− copy shipped in /opt/hpmpi/help/ping_pong_ring.c –o ppring.x
− bsub –I –n12  -ext “SLURM[nodes=12]” /opt/hpmpi/bin/mpirun  

–srun ./ppring.x 300000  

• Exclude “suspect” nodes explicitly 
− bsub –ext “SLURM[nodes=12;exclude=n[1-4]]”

• Include “suspect” nodes explicitly
− bsub –ext “SLURM[nodes=12;include=n[1-4]]”
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  HP-MPI Affinity Control
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HP-MPI support for Process binding 

•  
 
• distributes ranks across nodes

− mpirun -cpu_bind=[v,][policy[:maplist]] -srun a.out 
− [v] requests info on what binding is performed

• Policy is one of
− LL|RANK|LDOM|RR|RR_LL|CYCLIC|FILL|FILL_LL| 

− BLOCK|MAP_CPU|MAP_LDOM|PACKED|HELP

− MAP_CPU and MAP_LDOM list of cpu#s
• Example: bsub –I –n8 mpirun -cpu_bind=v,MAP_CPU:0,2,1,3 –srun ./a.out

 

…     This is the map info for the 2nd node

MPI_CPU_AFFINITY set to RANK, setting affinity of rank 4 pid 7156 on host dlcore1.rsn.hp.com to cpu 0

MPI_CPU_AFFINITY set to RANK, setting affinity of rank 5 pid 7159 on host dlcore1.rsn.hp.com to cpu 2

MPI_CPU_AFFINITY set to RANK, setting affinity of rank 6 pid 7157 on host dlcore1.rsn.hp.com to cpu 1

MPI_CPU_AFFINITY set to RANK, setting affinity of rank 7 pid 7158 on host dlcore1.rsn.hp.com to cpu 3

…
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HP-MPI support for Process binding 

•  
 $MPI_ROOT/bin/mpirun -cpu_bind=help ./a.out

-cpu_binding help info

    cpu binding methods available:

        rank      - schedule ranks on cpus according to packed rank id

        map_cpu   - schedule ranks on cpus in cycle thru MAP variable

        mask_cpu  - schedule ranks on cpu masks in cycle thru MAP variable

        ll        - bind each rank to cpu each is currently running on

    for numa based systems the following are also available:

        ldom      - schedule ranks on ldoms according to packed rank id

        cyclic    - cyclic dist on each ldom according to packed rank id

        block     - block dist on each ldom according to packed rank id

        rr        - same as cyclic, but consider ldom load avg.

        fill      - same as block, but consider ldom load avg.

        packed    - bind all ranks to the same ldom as lowest rank

        slurm     - slurm binding

        ll        - bind each rank to ldom each is currently running on

        map_ldom  - schedule ranks on ldoms in cycle thru MAP variable
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Memory Models

Examples of NUMA or NUMA-like systems:

• Dual-core Opteron has (in effect) local and remote memories, is 
considered a NUMA 

• Single-core Opteron with memory controller is considered as a NUMA-
like system

• Cell-based Itanium SMP system, is considered a NUMA system. 

LDOM
(Local Memory)

Core Core Core

LDOM
(Local Memory)

NUMA NUMA-like

LDOM
(Local Memory)

Core Core Core

LDOM
(Local Memory)
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Example of Rank and LDOM distributions

mpirun –np 8 –srun -m=cyclic

causes ranks and Packed Rank IDs to be distributed 
across 2 4-Core hosts as:

LDOM 0

Rank 0

 Packed 
Rank 
ID 0

 LDOM 1

Rank 2

 Packed 
Rank 
ID 1

Rank 4

 Packed 
Rank 
ID 2

Rank 6

 Packed 
Rank 
ID 3

LDOM 0

Rank 1

 Packed 
Rank 
ID 0

LDOM 1

Rank 3

 Packed 
Rank 
ID 1

Rank 5

 Packed 
Rank 
ID 2

Rank 7

 Packed 
Rank 
ID 3

HOST 1 HOST 2
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Another Example of Rank and LDOM distributions

mpirun –np 8 –srun -m=block

causes ranks and Packed Rank IDs to be distributed 
across 2 4-Core hosts as:

LDOM 0

Rank 0

 Packed 
Rank 
ID 0

 LDOM 1

Rank 1

 Packed 
Rank 
ID 1

Rank 2

 Packed 
Rank 
ID 2

Rank 3

 Packed 
Rank 
ID 3

LDOM 0

Rank 4

 Packed 
Rank 
ID 0

LDOM 1

Rank 5

 Packed 
Rank 
ID 1

Rank 6

 Packed 
Rank 
ID 2

Rank 7

 Packed 
Rank 
ID 3

HOST 1 HOST 2
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ccNUMA and I/O buffer-cache Interaction

• On Opteron systems, memory can either be 100% interleaved among processors or 100% 
processor-local

− For best performance, we use processor-local memory

• Linux can use all available memory for IO buffering

• When a user process requests local memory and the local memory is in use for IO buffering, 

• LINUX assigns the memory on another processor  worst-case latency

• Given user demand for local memory, LINUX frees the IO buffers over time – at which point the 
best runtime is achieved

 LDOM

Core Core

LDOM

Core Core

LDOM

Core Core

LDOM

Core Core

DL585/4p8c
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  HP-MPI Scaleout
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HP-MPI Scaleout Challenges 

• Scalable process startup
− reducing  number of open sockets
− Tree structure of MPI Daemons
− now handles > 256 MPI ranks (srun and appfile)

• Scalable teardown of processes
• Scalable Licensing 

− rank 0 checks for an N rank license.

• Scalable setup data
− reduced Init4 Message size by 96%

• Managing  IB Buffer requirements
− physical memory pinning

• 1-sided lock/unlock now over IB if using VAPI
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Managing  IB Buffer requirements 
•  Two modes: RDMA and Shared-Receive-Queue

• The amount of memory pinned (locked in physical memory)  

− 1) memory which is always pinned  (base)
− 2) memory that may be pinned depending on communication.    (dynamic)

• maximum_dynamic_pinned_memory = min(2 * max_messages * chunksize), 
(physical_memory / local_ranks) * pin_percentage);

− max_messages is 3 * remote connections and chunksize varies depending on the 
protocol. 
• for IB it is 4MB and for GM it is 1MB.

− maximum_dynamic_pinned_memory <= MPI_PIN_PERCENTAGE of rank's portion 
of physical memory.  For large clusters, the limit will generally be based on the 
pin_percentage as 2*max_messages*chunksize gets large for even moderate 
clusters.

− MPI_PIN_PERCENTAGE is 20% by default, but can be changed by the user.  
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Managing  IB Buffer reqs cont 
• Default is -rdma from 1 to 1024 ranks.
• Default is -srq mode for 1025 ranks or larger.

• "base" memory is based on the number of off-host connections.  

• Without –srq  (aka -rdma): 
− base_pinned_memory = envelopes * 2 * shortlen * N 

• With -srq: 
− base_pinned_memory = min(N * 8 , 2048) * 2 * shortlen

• envelopes = # of envelopes for each connection, default is 8 (can be 
changed by the user) 

• shortlen = short message length, default is 16K for infiniband (uDAPL and 
VAPI).

•  
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Managing  IB Buffer reqs cont 
•  For a 2048 CPU job (memory per rank):

  8 * 2 * 16K * 2047 = 524,032K  (WITHOUT srq)
2048 * 2 * 16K       =   65,536K  (WITH srq)

• If we have two ranks on a node, then the total pre-pinned 
memory will be
− around 1G without srq and 128MB with srq.  

• For 4 ranks per node (still 2048 CPU's total)
− 2048 ranks -->  roughly 2GB without SRQ and 256MB with SRQ.
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Shared-Receive-Queue model for Dynamic Message Buffer

• HP-MPI default mode for more than 1024 ranks 
• Also triggered with –srq option for mpirun
• Shared-Receive-Queue

– A single shared memory communication queue on each node 
• Other processes write directly to this buffer.
• Buffer is in shared memory

– Size of queue grows with the number of ranks in the job up to maximum size at 1024 
ranks

SRQ_dynamic_memory = min(Nranks, 1024) * 4 * shortlen * RanksPerNode

– shortlen = short message length. Determined by interconnect
– Nranks = Number of MPI ranks in the job
– RanksPerNode = Number of ranks per node
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Effect of PIN Percentage on Buffer Memory
Change PIN Percentage to increase amount of usable base memory 

Problem:
• a.out: Rank 0:23: MPI_Init: ERROR: The total amount of memory that may be pinned  (210583540 bytes), is 

insufficient to support even minimal rdma network transfers.  This value was derived by taking 20% of 
physical memory (2105835520 bytes) and dividing by the number of local ranks (2). A minimum of 

253882484 bytes must be able to be pinned.  
Solution:
• These values can be changed by setting environment variables

− MPI_PIN_PERCENTAGE 

− MPI_PHYSICAL_MEMORY (Mbytes).

• In this case, 210583540 bytes is about 83% of the 253882484 bytes required.

• Increasing the MPI_PIN_PERCENTAGE from the default of 20% to 24% is sufficient to allow the 
application to run.  Here is how to set to 30%:

$MPI_ROOT/bin/mpirun -e MPI_PIN_PERCENTAGE=30 –srun ./a.out
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Managing  InfiniBand Message Buffer Example

1200 ranks over InfiniBand 
used for this example

RDMA Mode
Memory footprint measured 

with ‘top’
PID   USER       PR  NI   VIRT  RES  SHR S %CPU %MEM    TIME

MPI_RDMA_NENVELOPE=8 
gives optimum performance 
at a reasonable memory 
footprint

25.450810

21.44328

253566

272794

BAD 
IDEA
!    

2012

CPU
Time
Sec

Memory 
footprint
(MB)

MPI_RDMA_NENVELOPE
value
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Managing  IB Buffer reqs cont 

•  Latency for RDMA vs SRQ 

        rdma srq
0 byte latency : 3.97us 7.09us
4M bandwidth: 903.61 902.63
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Startup Performance Data 

0

2

4

6

8

10

12

32-
srun

32-
appfile

64-
srun

64-
appfile

128-
srun

128-
appfile

256-
srun

256-
appfile

512-
srun

512-
appfile

1024-
srun

1024-
appfile

1300-
srun

1300-
appfile

Time to rdma_connect

Time to get init4 broadcast (estimated)

Time receiving init3 messages

Time to broadcast init2 and get f irst init 3 back

mpids connect to mpirun

w aiting for f irst mpid to connect back
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References

• HP-MPI User’s Guide
• XC User’s Guide



June 6, 2007  

HP-MPI Object Compatibility

MPICH 
V1.2.5
MPI-1

Application
MPI-1

(built shared)

MPICH Compatible
MPI-1

Linux Itanium
Linux x86
XC V2.0

HP-MPI V2.1
MPI-1
MPI-2

A compatibility is documented in the MPI V2.1 & later Release Note

HP-MPI V2.1 and later is

object compatible 

with MPICH V1.2.5 

and later
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  SFS 
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Lustre support for SFS for XC

• Lustre allows individual files to be striped over 
multiple OSTs (Object Storage Targets) to improve 
overall throughput

• “striping_unit” = <value>
−Specifies number of consecutive bytes of a file that are 

stored on a particular IO device as part of a stripe set
• “striping_factor” = <value>

−Specifies the number of IO devices over which the file is 
striped. Cannot exceed the maximum defined by the 
system administrator

• “start_iodevice” = <value>
−Specifies the IO device from which striping will begin
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Lustre support for SFS for XC - cont
• These need to be defined prior to file creation so 

that the call to MPI_File_open can access them:
/* set new info values. */
value = randomize_start(); 
MPI_Info_create(&info);
MPI_Info_set(info, "striping_factor", "16");

   MPI_Info_set(info, "striping_unit", "131072");
MPI_Info_set(info, "start_iodevice", value );
/* open the file and set new info */
MPI_File_open(MPI_COMM_WORLD, filename, 

MPI_MODE_CREATE | MPI_MODE_RDWR, info, &fh);
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Questions?
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Thanks
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HP logo white on blue


