
© 2006 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

HP XC cluster
HP-MPI

workshop at CSC
11-15 june 2007

Patrick DEMICHEL patrick.demichel@hp.com
Architect HPC EMEA

mailto:patrick.demichel@hp.com

June 6, 2007

The information contained in this presentation is
proprietary to Hewlett-Packard (HP) and is offered in
confidence, subject to the terms and conditions of a
Non-Disclosure Agreement.

HP makes no warranties regarding the accuracy of this
information. HP does not warrant or represent that it will
introduce any product to which the information relates.
It is presented for evaluation by the recipient and to
assist HP in defining product direction.

Proprietary Reminder

June 6, 2007

Agenda

• HP-MPI
• Debugging
• Oprofile
• SFS

June 6, 2007

 HP-MPI

June 6, 2007

 HP-MPI 2.2 and XC 3.0

• Usability
– Xc jobs, srun, lustre, ssh, 32 bit mode,

• Debuggability and Profiling
– Message Profiling
– Message validation Library

• Communication and Cluster Health
– MPI Communication
– Interconnect health check

• Scaleout
– rank to core binding
– Startup, message buffers, licensing

• Performance Improvements
– InfiniBand, Ethernet

June 6, 2007

XC Job Control

LSF, SLURM, HP-MPI are tightly coupled, built to interact with a remote login program.

LSF determine WHEN the job will run LSF talks with SLURM to determine WHICH resources will be used.

SLURM - Determines WHERE the job runs. It controls things like which host each rank runs on. SLURM also starts
the executables on each host as requested by HP-MPI's mpirun

HP-MPI - Determines HOW the job runs, part of the application, handles communication. Can also pinpoint the
processor on which each rank runs.

SSH/rsh - The KEY that opens up remote hosts.

LSF
Job queueing system

SLURM
cluster management

& job scheduling

HP-MPI
Message Passing

ssh remote login

Key

When HowWhere

June 6, 2007

HP-MPI mpirun

Useful options:

-prot Prints the communication protocol
-np # - Number of processors to use
-h host - Set host to use
-e <var>[=<val>] - Set environment variable
-d - Debug mode
-v - Verbose
-i file - Write profile of MPI functions
-T - Prints user and system times for each MPI rank.
-srun - Use SLURM
-mpi32 - Use 32-bit interconnect libraries on X86-64
-mpi64 - Use 64-bit interconnect libraries on X86-64 (default)
-f appfile - Parallelism directed from instructions in appfile

June 6, 2007

SLURM srun utility

srun – SLURM utility to run parallel jobs
srun usage on XC:

− hpmpi option

• Use as: -srun options exe args

− hpmpi implied srun mode

• Use as: export MPI_USESRUN 1

• Set options by: export MPI_SRUNOPTIONS options

June 6, 2007

32- and 64-bit selection
• Options have been added to indicate the bitness

of the application so the proper interconnect
library can be invoked.

• Use –mpi32 or –mpi64 on the mpirun command
line for AMD64 and EM64T.

• Default is –mpi64.
• Mellanox only provides a 64-bit IB driver.

−32-bit apps are not supported for IB on AMD64 &
EM64T systems.

June 6, 2007

HP-MPI Parallel Compiler Options

Useful options:

-mpi32 - build 32-bit

Useful environment variables:

setenv MPI_CC cc - set C compiler

setenv MPI_CXX C++ - set C++ compiler

setenv MPI_F90 f90 - set Fortran compiler

setenv MPI_ROOT dir - useful when MPI not
installed in /opt/[hpmpi|mpi]

June 6, 2007

Problematic Compiler Options

INTEL PGI Description

-i8

-static

If you compile with this, be sure to link with
it.
Intel and AMD math libraries do not support
Integer*8.

-i8

Link static – does not allow HP-MPI to
determine interconnect -Bstatic

June 6, 2007

 HP-MPI Debugging

June 6, 2007

Debugging Scripts: Use hello_world Test case

#include <stdio.h>
#include <mpi.h>
main(int argc,char ** argv)
 {
 int rank, size, len;
 char name[MPI_MAX_PROCESSOR_NAME];

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 MPI_Get_processor_name(name, &len);
 printf ("Hello world! I'm %d of %d on %s\n", rank, size, name);
 MPI_Finalize();
 exit(0);
}

June 6, 2007

How to debug HP-MPI applications with
a single-process debugger
• export MPI_DEBUG_CONT=1
• Set the MPI_FLAGS environment variable to choose debugger. Values

are:
– eadb – Start under adb
– exdb – Start under xdb
– edde – Start under dde
– ewdb – Start under wdb
– egdb – Start under gdb

• Set DISPLAY to point to your console with ssh -X

June 6, 2007

Attaching Debuggers to HP-MPI Applications

• HP-MPI conceptually creates processes in MPI_Init, and
each process instantiates a debugger session.

• Each debugger session in turn attaches to the process that
created it.

• HP-MPI provides MPI_DEBUG_CONT to control the
point at which debugger attachment occurs via
breakpoint.

• MPI_DEBUG_CONT is a variable that HP-MPI uses to
temporarily spin the processes awaiting the user to allow
execution to proceed via debugger commands.

• By default, MPI_DEBUG_CONT is set to 0 and you
must set it to 1 to allow the debug session to continue past
this ‘spin barrier’ in MPI_Init.

June 6, 2007

Debugging HP-MPI apps cont:

•

June 6, 2007

Debugging HP-MPI apps cont:

•

June 6, 2007

 HP-MPI Profiling

June 6, 2007

Profiling

•Instrumentation
−Lightweight method for cumulative runtime statistics

−Profiles for applications linked with standard HP-MPI
library

−Profiles for applications linked with the thread-
compliant library

June 6, 2007

HP-MPI instrumentation profile:

 -i <myfile>[:opt] - produces a rank by rank summary of where
MPI spends its time and places result in file name myfile.trace

bsub –I –n4 mpirun –i myfile -srun ./a.out

 Application Summary by Rank (second):

 Rank Proc CPU Time User Portion System Portion

 0 0.040000 0.030000(75.00%) 0.010000(25.00%)
 1 0.050000 0.040000(80.00%) 0.010000(20.00%)
 2 0.050000 0.040000(80.00%) 0.010000(20.00%)
 3 0.050000 0.040000(80.00%) 0.010000(20.00%)

June 6, 2007

HP-MPI instrumentation continued

• Routine Summary by Rank:

 Rank Routine Statistic Calls Overhead(ms) Blocking(ms)

 0
 MPI_Bcast 4 7.127285 0.000000
 min 0.033140 0.000000
 max 5.244017 0.000000
 avg 1.781821 0.000000
 MPI_Finalize 1 0.034094 0.000000
 MPI_Init 1 1080.793858 0.000000
 MPI_Recv 2010 3.236055 0.000000

June 6, 2007

HP-MPI instrumentation continued

• Message Summary by Rank Pair:

 SRank DRank Messages (minsize,maxsize)/[bin] Totalbytes

 0
 1 1005 (0, 0) 0
 1005 [0..64] 0

 3 1005 (0, 0) 0
 1005 [0..64] 0

June 6, 2007

Diagnostic Library

−Advanced run time error checking and analysis
−Message signature analysis detects type mismatches
−Object-space corruption detects attempts to write into

objects
−Detects operations that causes MPI to write to a user

buffer more than once

June 6, 2007

HP-MPI Diagnostic Library

• Link with –ldmpi to enable diagnostic library, or use
• ld_preload on an existing pre-linked application (shared

libs)
• This will dynamically insert diagnostic lib

• mpirun -e LD_PRELOAD=libdmpi.so:libmpi.so -srun ./a.out

• This will also dump message formats (could be REALLY Large)
• mpirun -e LD_PRELOAD=libdmpi.so:libmpi.so -e

MPI_DLIB_FLAGS=dump:foof -srun ./a.out

• See “MPI_DLIB_FLAGS” on page 46 of Users Guide or
man mpienv for more information on controlling features.

June 6, 2007

 Oprofile

June 6, 2007

OPROFILE Profiling example
• oprofile configured in XC, but not enabled
• Need to be root to enable on a node

opcontrol --no-vmlinux
opcontrol --start
Using default event: GLOBAL_POWER_EVENTS:100000:1:1:1
Using 2.6+ OProfile kernel interface.
Using log file /var/lib/oprofile/oprofiled.log
Daemon started.
Profiler running.

Clear out old performance data.
opcontrol --reset
Signalling daemon... done

June 6, 2007

OPROFILE Profiling example cont.
• Run your application
 # bsub -I -n4 -ext "SLURM[nodelist=xcg14]"

./run_linux_amd_intel 4 121 test

• find the name of your executable

opreport --long-filenames

• Generate a report for that executable image
opreport -l
/mlibscratch/lieb/mpi2005.kit23/benchspec/MPI2005/121.pop2/run/r
un_base_test_intel.0001/pop2_base.intel | more

June 6, 2007

OPROFILE Profiling example cont.

June 6, 2007

OPROFILE Profiling kernel symbols

The actual version of the rpm may change

• The vmlinux file is contained in the kernel debug
RPM:
– kernel-debuginfo-2.6.9-11.4hp.XC.x86_64.rpm

• Kernel symbols file is installed in:
– /usr/lib/debug/lib/modules/2.6.9-11.4hp.XCsmp/vmlinux

• opcontrol --vmlinux=\
– /usr/lib/debug/lib/modules/2.6.9-11.4hp.XCsmp/vmlinux

June 6, 2007

 HP-MPI Communication

June 6, 2007

HP-MPI Communication
Movement of data depends on relative location of

destination and interconnect. Paths are:

• Communication within a Node (shared memory)

• Communication from Node to Node over TCP/IP

• Communication from Node to Node over high speed
interconnects InfiniBand, Quadrics, Myrinet

June 6, 2007

HP-MPI Communication within a Node

To Send data from Core 1 to Core 4:

Core 1 -> Core 1 Local Memory

Core 1 Local Memory* -> System Shared Memory**

System Shared Memory -> Core 4 Local Memory

Core 4 Local Memory -> Core 4
*The operating system makes Local Memory available to a single process

**The operating system makes Shared Memory available to multiple processes

Memory

Core 1 Core 2

Memory

Core 3 Core 4

Bus

data

June 6, 2007

HP-MPI Communication to another Node
via other Interconnects

To Send data from Core 1, Node 1 to Core 1, Node 2:

Core 1, Node 1 -> Core 1, Node 1 Local Memory

Core 1, Node 1 Local Memory -> Node 1 Shared Memory

Node 1 Shared Memory -> Interconnect

Interconnect -> Node 2 Shared Memory

Node 2 Shared Memory -> Core 1, Node 2 Local Memory

Core 1, Node 2 Local Memory -> Core 1, Node 2

Interconnect

Memory

Core 1 Core 2

Memory

Core 3 Core 4

RDMA

Memory

Core 1 Core 2

Memory

Core 3 Core 4

RDMA

data

June 6, 2007

X86-64: 32-bit versus 64-bit Interconnect
Support

• Supported 64-bit interconnects:
• TCP/IP

• GigE

• InfiniBand

• Elan

• Myrinet

• Supported 32-bit interconnects:
• TCP/IP

• Myrinet

• InfiniBand (but not 32 bit mode on 64 bit architectures)

June 6, 2007

Cluster Interconnect Status
• ‘-prot’ displays the protocol in use

− possibilities: VAPI SHM UDPL GM MX IT ELAN
− mpirun –prot –srun ./hello.x

• Measure bandwidth between pairs of nodes using
ping_pong_ring.c
− copy shipped in /opt/hpmpi/help/ping_pong_ring.c –o ppring.x
− bsub –I –n12 -ext “SLURM[nodes=12]” /opt/hpmpi/bin/mpirun

–srun ./ppring.x 300000

• Exclude “suspect” nodes explicitly
− bsub –ext “SLURM[nodes=12;exclude=n[1-4]]”

• Include “suspect” nodes explicitly
− bsub –ext “SLURM[nodes=12;include=n[1-4]]”

June 6, 2007

 HP-MPI Affinity Control

June 6, 2007

HP-MPI support for Process binding

•

• distributes ranks across nodes

− mpirun -cpu_bind=[v,][policy[:maplist]] -srun a.out
− [v] requests info on what binding is performed

• Policy is one of
− LL|RANK|LDOM|RR|RR_LL|CYCLIC|FILL|FILL_LL|

− BLOCK|MAP_CPU|MAP_LDOM|PACKED|HELP

− MAP_CPU and MAP_LDOM list of cpu#s
• Example: bsub –I –n8 mpirun -cpu_bind=v,MAP_CPU:0,2,1,3 –srun ./a.out

… This is the map info for the 2nd node

MPI_CPU_AFFINITY set to RANK, setting affinity of rank 4 pid 7156 on host dlcore1.rsn.hp.com to cpu 0

MPI_CPU_AFFINITY set to RANK, setting affinity of rank 5 pid 7159 on host dlcore1.rsn.hp.com to cpu 2

MPI_CPU_AFFINITY set to RANK, setting affinity of rank 6 pid 7157 on host dlcore1.rsn.hp.com to cpu 1

MPI_CPU_AFFINITY set to RANK, setting affinity of rank 7 pid 7158 on host dlcore1.rsn.hp.com to cpu 3

…

June 6, 2007

HP-MPI support for Process binding

•
 $MPI_ROOT/bin/mpirun -cpu_bind=help ./a.out

-cpu_binding help info

 cpu binding methods available:

 rank - schedule ranks on cpus according to packed rank id

 map_cpu - schedule ranks on cpus in cycle thru MAP variable

 mask_cpu - schedule ranks on cpu masks in cycle thru MAP variable

 ll - bind each rank to cpu each is currently running on

 for numa based systems the following are also available:

 ldom - schedule ranks on ldoms according to packed rank id

 cyclic - cyclic dist on each ldom according to packed rank id

 block - block dist on each ldom according to packed rank id

 rr - same as cyclic, but consider ldom load avg.

 fill - same as block, but consider ldom load avg.

 packed - bind all ranks to the same ldom as lowest rank

 slurm - slurm binding

 ll - bind each rank to ldom each is currently running on

 map_ldom - schedule ranks on ldoms in cycle thru MAP variable

June 6, 2007

Memory Models

Examples of NUMA or NUMA-like systems:

• Dual-core Opteron has (in effect) local and remote memories, is
considered a NUMA

• Single-core Opteron with memory controller is considered as a NUMA-
like system

• Cell-based Itanium SMP system, is considered a NUMA system.

LDOM
(Local Memory)

Core Core Core

LDOM
(Local Memory)

NUMA NUMA-like

LDOM
(Local Memory)

Core Core Core

LDOM
(Local Memory)

June 6, 2007

Example of Rank and LDOM distributions

mpirun –np 8 –srun -m=cyclic

causes ranks and Packed Rank IDs to be distributed
across 2 4-Core hosts as:

LDOM 0

Rank 0

 Packed
Rank
ID 0

 LDOM 1

Rank 2

 Packed
Rank
ID 1

Rank 4

 Packed
Rank
ID 2

Rank 6

 Packed
Rank
ID 3

LDOM 0

Rank 1

 Packed
Rank
ID 0

LDOM 1

Rank 3

 Packed
Rank
ID 1

Rank 5

 Packed
Rank
ID 2

Rank 7

 Packed
Rank
ID 3

HOST 1 HOST 2

June 6, 2007

Another Example of Rank and LDOM distributions

mpirun –np 8 –srun -m=block

causes ranks and Packed Rank IDs to be distributed
across 2 4-Core hosts as:

LDOM 0

Rank 0

 Packed
Rank
ID 0

 LDOM 1

Rank 1

 Packed
Rank
ID 1

Rank 2

 Packed
Rank
ID 2

Rank 3

 Packed
Rank
ID 3

LDOM 0

Rank 4

 Packed
Rank
ID 0

LDOM 1

Rank 5

 Packed
Rank
ID 1

Rank 6

 Packed
Rank
ID 2

Rank 7

 Packed
Rank
ID 3

HOST 1 HOST 2

June 6, 2007

ccNUMA and I/O buffer-cache Interaction

• On Opteron systems, memory can either be 100% interleaved among processors or 100%
processor-local

− For best performance, we use processor-local memory

• Linux can use all available memory for IO buffering

• When a user process requests local memory and the local memory is in use for IO buffering,

• LINUX assigns the memory on another processor  worst-case latency

• Given user demand for local memory, LINUX frees the IO buffers over time – at which point the
best runtime is achieved

 LDOM

Core Core

LDOM

Core Core

LDOM

Core Core

LDOM

Core Core

DL585/4p8c

June 6, 2007

 HP-MPI Scaleout

June 6, 2007

HP-MPI Scaleout Challenges

• Scalable process startup
− reducing number of open sockets
− Tree structure of MPI Daemons
− now handles > 256 MPI ranks (srun and appfile)

• Scalable teardown of processes
• Scalable Licensing

− rank 0 checks for an N rank license.

• Scalable setup data
− reduced Init4 Message size by 96%

• Managing IB Buffer requirements
− physical memory pinning

• 1-sided lock/unlock now over IB if using VAPI

June 6, 2007

Managing IB Buffer requirements
• Two modes: RDMA and Shared-Receive-Queue

• The amount of memory pinned (locked in physical memory)

− 1) memory which is always pinned (base)
− 2) memory that may be pinned depending on communication. (dynamic)

• maximum_dynamic_pinned_memory = min(2 * max_messages * chunksize),
(physical_memory / local_ranks) * pin_percentage);

− max_messages is 3 * remote connections and chunksize varies depending on the
protocol.
• for IB it is 4MB and for GM it is 1MB.

− maximum_dynamic_pinned_memory <= MPI_PIN_PERCENTAGE of rank's portion
of physical memory. For large clusters, the limit will generally be based on the
pin_percentage as 2*max_messages*chunksize gets large for even moderate
clusters.

− MPI_PIN_PERCENTAGE is 20% by default, but can be changed by the user.

June 6, 2007

Managing IB Buffer reqs cont
• Default is -rdma from 1 to 1024 ranks.
• Default is -srq mode for 1025 ranks or larger.

• "base" memory is based on the number of off-host connections.

• Without –srq (aka -rdma):
− base_pinned_memory = envelopes * 2 * shortlen * N

• With -srq:
− base_pinned_memory = min(N * 8 , 2048) * 2 * shortlen

• envelopes = # of envelopes for each connection, default is 8 (can be
changed by the user)

• shortlen = short message length, default is 16K for infiniband (uDAPL and
VAPI).

•

June 6, 2007

Managing IB Buffer reqs cont
• For a 2048 CPU job (memory per rank):

 8 * 2 * 16K * 2047 = 524,032K (WITHOUT srq)
2048 * 2 * 16K = 65,536K (WITH srq)

• If we have two ranks on a node, then the total pre-pinned
memory will be
− around 1G without srq and 128MB with srq.

• For 4 ranks per node (still 2048 CPU's total)
− 2048 ranks --> roughly 2GB without SRQ and 256MB with SRQ.

June 6, 2007

Shared-Receive-Queue model for Dynamic Message Buffer

• HP-MPI default mode for more than 1024 ranks
• Also triggered with –srq option for mpirun
• Shared-Receive-Queue

– A single shared memory communication queue on each node
• Other processes write directly to this buffer.
• Buffer is in shared memory

– Size of queue grows with the number of ranks in the job up to maximum size at 1024
ranks

SRQ_dynamic_memory = min(Nranks, 1024) * 4 * shortlen * RanksPerNode

– shortlen = short message length. Determined by interconnect
– Nranks = Number of MPI ranks in the job
– RanksPerNode = Number of ranks per node

June 6, 2007

Effect of PIN Percentage on Buffer Memory
Change PIN Percentage to increase amount of usable base memory

Problem:
• a.out: Rank 0:23: MPI_Init: ERROR: The total amount of memory that may be pinned (210583540 bytes), is

insufficient to support even minimal rdma network transfers. This value was derived by taking 20% of
physical memory (2105835520 bytes) and dividing by the number of local ranks (2). A minimum of

253882484 bytes must be able to be pinned.
Solution:
• These values can be changed by setting environment variables

− MPI_PIN_PERCENTAGE

− MPI_PHYSICAL_MEMORY (Mbytes).

• In this case, 210583540 bytes is about 83% of the 253882484 bytes required.

• Increasing the MPI_PIN_PERCENTAGE from the default of 20% to 24% is sufficient to allow the
application to run. Here is how to set to 30%:

$MPI_ROOT/bin/mpirun -e MPI_PIN_PERCENTAGE=30 –srun ./a.out

June 6, 2007

Managing InfiniBand Message Buffer Example

1200 ranks over InfiniBand
used for this example

RDMA Mode
Memory footprint measured

with ‘top’
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME

MPI_RDMA_NENVELOPE=8
gives optimum performance
at a reasonable memory
footprint

25.450810

21.44328

253566

272794

BAD
IDEA
!

2012

CPU
Time
Sec

Memory
footprint
(MB)

MPI_RDMA_NENVELOPE
value

June 6, 2007

Managing IB Buffer reqs cont

• Latency for RDMA vs SRQ

 rdma srq
0 byte latency : 3.97us 7.09us
4M bandwidth: 903.61 902.63

June 6, 2007

Startup Performance Data

0

2

4

6

8

10

12

32-
srun

32-
appfile

64-
srun

64-
appfile

128-
srun

128-
appfile

256-
srun

256-
appfile

512-
srun

512-
appfile

1024-
srun

1024-
appfile

1300-
srun

1300-
appfile

Time to rdma_connect

Time to get init4 broadcast (estimated)

Time receiving init3 messages

Time to broadcast init2 and get f irst init 3 back

mpids connect to mpirun

w aiting for f irst mpid to connect back

June 6, 2007

References

• HP-MPI User’s Guide
• XC User’s Guide

June 6, 2007

HP-MPI Object Compatibility

MPICH
V1.2.5
MPI-1

Application
MPI-1

(built shared)

MPICH Compatible
MPI-1

Linux Itanium
Linux x86
XC V2.0

HP-MPI V2.1
MPI-1
MPI-2

A compatibility is documented in the MPI V2.1 & later Release Note

HP-MPI V2.1 and later is

object compatible

with MPICH V1.2.5

and later

June 6, 2007

 SFS

June 6, 2007

Lustre support for SFS for XC

• Lustre allows individual files to be striped over
multiple OSTs (Object Storage Targets) to improve
overall throughput

• “striping_unit” = <value>
−Specifies number of consecutive bytes of a file that are

stored on a particular IO device as part of a stripe set
• “striping_factor” = <value>

−Specifies the number of IO devices over which the file is
striped. Cannot exceed the maximum defined by the
system administrator

• “start_iodevice” = <value>
−Specifies the IO device from which striping will begin

June 6, 2007

Lustre support for SFS for XC - cont
• These need to be defined prior to file creation so

that the call to MPI_File_open can access them:
/* set new info values. */
value = randomize_start();
MPI_Info_create(&info);
MPI_Info_set(info, "striping_factor", "16");

 MPI_Info_set(info, "striping_unit", "131072");
MPI_Info_set(info, "start_iodevice", value);
/* open the file and set new info */
MPI_File_open(MPI_COMM_WORLD, filename,

MPI_MODE_CREATE | MPI_MODE_RDWR, info, &fh);

June 6, 2007

Questions?

June 6, 2007

Thanks

June 6, 2007

HP logo white on blue

