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HPC in Cryptanalysis 
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• GSM Cipher breaking 
• 6 x 106 CPU hours of one 

time computation 
• 160 CPU hours of 

computation and 230 
searches in 5 – 10 TB data 
required to be accomplished 
in real time 
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High Lift System Analysis - Boeing Research Project 

 Grid Size 60 M Cells  

 Time taken 24 hours on 256 cores  
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MPI World 

#include <stdio.h> 

#include <stdlib.h> 

#include <mpi.h> 

int main (int argc, char *argv[]) 

{ 

 int id; // process rank 

 int p; // number of processes 

 char hostname[128]; 

 gethostname(hostname,128); 

 MPI_Init(&argc, &argv); 

 MPI_Comm_rank(MPI_COMM_WORLD, &id); 

 MPI_Comm_size(MPI_COMM_WORLD, &p); 

 

 printf("I am rank: %d out of %d 

   \n", id, p); 

 

 MPI_Finalize();   

 return 0; 

} 

Output –   

 

$ I am rank: 0 out of 4 

I am rank: 3 out of 4 

I am rank: 1 out of 4 

I am rank: 2 out of 4 
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Multi node computations 

Outline  

• MPI overview 

• Point to Point communication 

• One to One communication 

• Collective communication 

• One to all, All to one & All to All 

• Tools for MPI 
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Point to Point Communication 
Send and Receive 

May 9, 2013 
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Computational Problem 

 

 

• The Matrix – Vector product 

• Size MxM for some large M  

• For row = 0 to M  

• row*vec 

• Typically computed sequentially 

• Multi threaded solution 

• What if memory is not sufficient 

• We have N compute nodes 

• Partitioning of data 

• Data communication 

• Message Passing Interface 

 

 

Overview  

= 

Matrix M Vector V Result R 
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Message passing Interface – MPI  

• Message Passing Interface 

• A standard  

• Implementations 

• Commercial – HP MPI, IBM MPI 

• Open Source – OpenMPI, mvapich, mpich 

• Similarity with threads – parallel execution   
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MPI – First encounter 

MPI Start and finish 
int MPI_Init (int *argc, char **argv) 

int MPI_Finalize (void) 

 

Information for calculations 
int MPI_Comm_size (MPI_Comm comm, int *size) 

int MPI_Comm_rank (MPI_Comm comm, int *rank) 
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First Program 

#include <stdio.h> 

#include <stdlib.h> 

#include <mpi.h> 

int main (int argc, char *argv[]) 

{ 

 int id; // process rank 

 int p; // number of processes 

 char hostname[128]; 

 gethostname(hostname,128); 

 MPI_Init(&argc, &argv); 

 MPI_Comm_rank(MPI_COMM_WORLD, &id); 

 MPI_Comm_size(MPI_COMM_WORLD, &p); 

 

 printf("I am rank: %d out of %d 

   \n", id, p); 

 

 MPI_Finalize(); // To be called 

     last 

and once 

 return 0; 

} 

Compile –   

 

$ mpicc my_first_mpi.c  -o 

run.out   

Run –   

 

$ mpirun –np <num_cpu> 

./run.out   

Output –   

 

$ I am rank: 2 out of num_cpu   
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Matrix – Vector product 

• M x M matrix for large M 

• P compute nodes 

• Partitioning of data, How? 

• M/P rows to each node 

• Vector V to all 

• Message Passing Interface 

• MPI Send and receive 

• Performance gain ? 

• What factor? 

• Data transfer between nodes 

• Communication cost ?  

= 

Matrix M Vector V Result R 
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Matrix – Vector Distribution 

Node 0 

Memory 
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MPI Send and Recv 

Node 0 
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C0 C1 
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Send T1 
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Communication cost 

• Lets measure different timing in send/recv process 

• Cost involved in data send is (T1+T2+T3) 

 

 

Timing in µsec 

Round Trip One way Avg 

1 char 3 1 

10 chars 126 61 

100 chars 926 467 
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MPI_Send & MPI_Recv 

MPI Send and Recv (Blocking calls) 

 
MPI_Send(void* data, int count, MPI_Datatype 

datatype, int destination, int tag, MPI_Comm 

communicator) 

 

MPI_Recv(void* data, int count, MPI_Datatype 

datatype, int source, int tag, MPI_Comm 

communicator, MPI_Status* status) 
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MPI Send and Recv 

#include <stdio.h> 

#include <stdlib.h> 

#include <mpi.h> 

int main (int argc, char *argv[]) 

{ 

 int id; // process rank 

 int p; // number of processes 

 int send_buff, recv_buff; 

 MPI_Init(&argc, &argv);   

 MPI_Comm_rank(MPI_COMM_WORLD, &id); 

 MPI_Comm_size(MPI_COMM_WORLD, &p); 

 if(0 == id) 

 { 

  send_buff = 10; 

  MPI_Send(&send_buff, 1, MPI_INT, 1, TAG, MPI_COMM_WORLD); 

 } 

 if(1 == id) 

 { 

  MPI_Recv(&recv_buff, 1, MPI_INT, 0, TAG, MPI_COMM_WORLD,  

       &Status); 

 } 

 MPI_Finalize();  

 return 0; 

} 

Things to remember 

• Same program runs on each 

rank 

• All ranks should have space 

allocated for recv_buff before 

actual recv call 
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Matrix – Vector product with MPI 

MV_SendRecv.c
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Summary 

 

• Lets summarize 

• Introduction to MPI 

• Basic construct 

• Parallel computation comes with communication 

• Communication cost 

• Data send and receive 

• Matrix – Vector dot product using MPI 
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Non blocking Send and Recv 

 

 

• Cost involved in data send/recv is (T1+T2+T3) 

• Process blocks till data is copied to/from comm buffer 

• Can we do some thing else during this time? 

• Yes 

• Sender and receiver both can work on other tasks 

• Non blocking calls 

• MPI_Isend & MPI_Irecv 

 

 



21  Copyright © Tata Consultancy Services Limited 

MPI_Isend & MPI_Irecv 

 

MPI Isend and Irecv (Non Blocking calls) 

 
MPI_Isend(void *buf, int count, MPI_Datatype 

datatype, int dest, int tag, MPI_Comm comm, 

  MPI_Request *request) 

 

MPI_Irecv(void *buf, int count, MPI_Datatype 

datatype, int source, int tag, MPI_Comm comm, 

  MPI_Request *request) 
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Example 

#include <stdio.h> 

#include <unistd.h> 

#include <mpi.h> 

int main (int argc, char *argv[]) 

{ 

 int id; // process rank 

 int p; // number of processes 

 int send_buff, recv_buff; 

 MPI_Init(&argc, &argv);   

 MPI_Comm_rank(MPI_COMM_WORLD, &id); 

 MPI_Comm_size(MPI_COMM_WORLD, &p); 

 if(0 == id) 

 { 

  send_buff = 10; 

  MPI_Isend(&send_buff, 1, MPI_INT, 1, TAG, MPI_COMM_WORLD,  

       &reqs[tag1]); 

  my_task(); 

 } 

 if(1 == id) 

  MPI_Recv(&recv_buff, 1, MPI_INT, 0, TAG, MPI_COMM_WORLD,  

       &Status); 

 MPI_Finalize();  

 return 0; 

} 
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Example 

• Lets consider an example where 

we send a buffer and also need to 

do some computation 

• MPI_Send(&buff, …) 

• Computation 
For(i = 0; i < M; i++) 

c[i] = a[i] + b[i]; 

 

Program Time in 

µsec 

With 

MPI_Send 

54430 

With 

MPI_Isend 

18488 
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Thank You 

May 9, 2013 
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Multi node computations 

Outline  

• Collective communication 

• One to all, all to one, all to all 

• Barrier, Broadcast, Gather, Scatter, All gather, 

Reduce 
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MPI Collectives – Part I 
One to All communication 

May 9, 2013 
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Collective Constructs 

• So far we have seen point to point communication 

• One source and one destination 

• MPI_Send(), MPI_Recv 

• Communication involving all processes 

• One to all, all to all, all to one 

• Challenge? 

• Synchronization 

• Read modify write operations 

• All processes must reach a common point 

• Barrier  
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MPI Barrier  
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MPI Barrier 

MPI Construct  
MPI_Barrier(MPI_Comm communicator) 

for (i = 0; i < num_trials; i++)  

{ 

 //Synchronize before starting  

 MPI_Barrier(MPI_COMM_WORLD);  

 my_mpi_function();  

 // Synchronize again  

 MPI_Barrier(MPI_COMM_WORLD);  

} 
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Matrix – Vector Product problem 

 

 

• Matrix – Vector product 

• Matrix M, vector V & result 

vector R  

• R = matvec_prod(M, V) 

• On multi-node (P) setup? 

• Data distribution 

• Distribute rows (M/P) to 

each node 

• Vector V to all 

 

Overview  

= 

Matrix M 
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MPI Broadcast 

0 

1 2 3 4 5 6 7 

• Process 0 sends data to all 

• Obvious choice  

• MPI_Send() 
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MPI Broadcast 

if(0 == id) 

{ 

 send_buff = 10; 

 for (i = 1, i < num_procs; i++) 

  MPI_Send(&send_buff, 1, MPI_INT, i, TAG,  

      MPI_COMM_WORLD); 

} 

else 

 MPI_Recv(&recv_buff, 1, MPI_INT, 0, TAG, MPI_COMM_WORLD, 

      &status); 

• Process 0 sends data to all 

• Is it good enough? 

• Can we do better? 

• Yes 

• Loop is using only 1 network link (0 to other nodes) 
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MPI Broadcast 

0 

1 2 

3 4 5 6 7 

• Tree based approach is much more efficient 

• More network links get utilized 

• MPI provides a construct for this 

• MPI_Bcast (MPI Broadcast) 
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MPI Broadcast 

0 

1 2 3 4 5 6 7 

MPI_Bcast 

 

MPI Construct  
MPI_Bcast(void* data, int count, 

MPI_Datatype datatype, int root, MPI_Comm 

communicator) 
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Efficiency 

• Comparison of broadcast with MPI_Bcast() & My_Bcast() 

• My_Bcast()  

• For loop MPI_Send() & MPI_Recv()  

Num of 

Processors 

My_Bcast MPI_Bcast() 

Timing in µ sec 

2 132 60 

4 147 66 

8 3162 117 

16 17985 136 
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First Example 

#include <stdio.h> 

#include <stdlib.h> 

#include <mpi.h> 

int main (int argc, char *argv[]) 

{ 

 int id; // process rank 

 int p; // number of processes 

 int send_buff; 

 

 MPI_Init(&argc, &argv);   

 MPI_Comm_rank(MPI_COMM_WORLD, &id); 

 MPI_Comm_size(MPI_COMM_WORLD, &p); 

 if(0 == id) 

  send_buff = 10; 

 MPI_Bcast(&send_buff, 1, MPI_INT, 0, MPI_COMM_WORLD); 

  

 MPI_Finalize();  

 return 0; 

} 
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Summary 

• Synchronization of process 

• MPI_Barrier() 

• Collective communication 

• One to all 

• My broadcast using MPI send/recv 

• MPI Broadcast – MPI_Bcast() 

• Tree based approach  

• Efficient 

• First example using MPI_Bcast() 
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Back to Matrix – Vector product 

• Our partitioning approach 

• Each process gets M/P 

rows and full vector V 

• What can we broadcast? 

• Rows of M or vector V or both? 

• Vector V 

• Our strategy would be  

• Process 0 sends M/P rows 

to each 

• Broadcast V to all 

• Each computes M/P 

elements of result vector 

= 

M/P rows 

Vector V 
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Matrix – Vector product 

• We have all the inputs for Matrix-Vector product program 

• So lets explore Matrix-vector product using MPI_Bcast()  

Mv_bcast.c
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Thank You 

May 9, 2013 
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Discussions thus far: MV product

1. Matrix vector product parallel implementation.

2. Each process broadcasted vector V.
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Matrix Vector product

1. N rows, P processes.

2. Each process gets N/P rows for local computation.

3. Data can be sent to each process using send receive routines.

4. Will involve multiple pairs of data exchange among each process.

5. Scatter rows using MPI Scatter
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MPI Scatter

1. Distributes equal sized chunks of data from a root process to other
processes within a group.

2. Distribution of data is taken care internally and sent in order of ranks.
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MPI Scatter

MPI Scatter (&sendbuf, sendcnt, sendtype, &recvbuf, recvcnt, recvtype,
root, comm)

1. sendbuf (starting address of send buffer)

2. sendcount (num elements sent to each process)

3. sendtype (type)

4. recvbuf (address of receive buffer)

5. recvcount (num elements in receive buffer)

6. recvtype (data type of receive elements)

7. root (rank of sending process)

8. comm (communicator)

TATA Consultancy Services, Experience Certainity 5 c©All rights reserved



Scattering Matrix

1 f l o a t A[N ] [N] , Ap [N/P ] [N] , b [N ] ;
2
3 r oo t = 0 ;
4
5 MPI Scat te r (A, N/P∗N, MPI Float , Ap , N/P∗N, MPI Float , root ,

MPI COMM WORLD) ;

TATA Consultancy Services, Experience Certainity 6 c©All rights reserved



Matrix Vector product

1. Partial results on each prosess: N / P rows multiplied with vector V.

2. Partial results from individual processes need to be assembled to one
process.

3. Can be achieved using MPI Gather.
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MPI Gather

1. MPI Gather collects results from individual processes to a root
process.

2. Send receive routines would require multiple pairs of data exchange.

3. MPI Gather (&sendbuf, sendcnt, sendtype, &recvbuf, recvcount,
recvtype, root, comm)
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Gather MV product elements

1 f l o a t A[N ] [N] , Ap [N/P ] [N] , b [N] , c [N] , cp [N/P ] ;
2
3 f o r ( i = 1 ; i < N/P ; i++)
4 {
5 cp [ i ] = 0 ;
6 f o r ( k = 0 ; k < N; k++)
7 cp [ i ] = cp [ i ] + Ap [ i ] [ k ] ∗ b [ k ] ;
8 }
9 MPI Gather ( cp , N/P , MPI Float , c , N/P , MPI Float , root ,

10 MPI COMM WORLD) ;

TATA Consultancy Services, Experience Certainity 9 c©All rights reserved



Scatter - Gather

TATA Consultancy Services, Experience Certainity 10 c©All rights reserved



Summary

What we covered yet :

1. MPI Scatter: distributuion of data to multiple processes.

2. MPI Gather: collect multiple process results to one process.

Some more collectives :

1. MPI AllGather

2. MPI Reduce

3. MPI All Reduce

4. MPI AlltoAll
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MPI All Gather

1. Gathers data from all tasks and distribute the combined data to all
tasks.

2. MPI Allgather (&sendbuf, sendcount, sendtype, &recvbuf, recvcount,
recvtype, comm)
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MPI All Gather
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tasks.
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MPI All Gather

1
2 f l o a t A[N ] [N] , Ap [N/P ] [N] , b [N] , c [N] , cp [N/P ] ;
3
4 f o r ( i = 1 ; i < N/P ; i++)
5
6 {
7 cp [ i ] = 0 ;
8 f o r ( k = 0 ; k < N; k++)
9 cp [ i ] = cp [ i ] + Ap [ i ] [ k ] ∗ b [ k ] ;

10
11 }
12 MPI Al lGathe r ( cp , N/P , MPI Float , c , N/P , MPI Float ,
13 MPI COMM WORLD) ;
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Problem : Inner Product of two Vectors

dotProduct = a1 * b1 + a2 * b2 + a3 * b3 + ......

1. Computation of local sums with multiple processes

2. Gathering of local sums to process root.

3. Summation of local sums on process root.

4. Gathering of data and summation can be combined using
MPI Reduce.
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MPI Reduce

1. Applies a reduction operation on all tasks in the group and places the
result in one task.

2. Operations like sum, product etc can be performed on the gathered
data.

3. MPI Reduce (&sendbuf,&recvbuf, count, datatype, op, root, comm)
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MPI Reduce

1 l o c n = n/p ;
2 bn = 1 + ( my rank ) ∗ l o c n ;
3 en = bn + loc n −1;
4 l o c d o t = 0 . 0 ;
5 f o r ( i = bn ; i <= en ; i++) {
6 l o c d o t = l o c d o t + a [ i ]∗ b [ i ] ;
7 }
8
9 MPI Reduce(& l o c do t , &globa l sum , 1 , MPI FLOAT , MPI SUM, 0 ,

MPI COMM WORLD) ;
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MPI All Reduce

1. Applies a reduction operation and places the result in all tasks in the
group.

2. This is equivalent to an MPI Reduce followed by an MPI Bcast.

3. MPI Allreduce ( &sendbuf, &recvbuf, count, datatype, op, comm )
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MPI All to All

1. Each task in a group performs a scatter operation, sending a distinct
message to all the tasks in the group in order by index.

2. MPI Alltoall (&sendbuf,sendcount,sendtype,&recvbuf,
recvcnt,recvtype,comm)

3. Matrix transpose implementation for matrix distributed among several
processors.
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MPI AlltoAll

1 i n t myrank , nprocs , n l , n , i , j ;
2 f l o a t ∗data , ∗ d a t a l
3
4 /∗ l o c a l a r r a y s i z e on each proc = n l ∗/
5 d a t a l = ( f l o a t ∗) ma l l o c ( n l ∗ s i z e o f ( f l o a t ) ∗ nproc s ) ;
6
7 f o r ( i = 0 ; i < n l ∗ nproc s ; ++i )
8 d a t a l [ i ] = myrank ;
9

10 data = ( f l o a t ∗) ma l l o c ( np roc s ∗ s i z e o f ( f l o a t ) ∗ n l ) ;
11
12 MP I A l l t o a l l ( d a t a l , n l , MPI FLOAT , data , n l , MPI FLOAT ,

MPI COMM WORLD) ;
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Summary

1. All to One: MPI Gather, MPI Reduce

2. One to All: MPI Scatter

3. All to All: MPI AllGather, MPI Allreduce, MPI AlltoAll

4. Collective routines reduce implementation comlexity efficiently.
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Thank You
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MPI: Assignments

Parallelization and Optimization Group
TATA Consultancy Services, SahyadriPark Pune, India

May 9, 2013
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General Instructions

1. The assignment consists of a set of problem codes.

2. Each code is written partially.

3. The codes need to be written completely, wherever indicated with
comments.

4. The codes need to be compiled and excecuted.

5. Instructions for each problem are indicated in the following slides.
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Problem 1

1. Send one double value from rank 0.

2. Receive value at rank 1.

3. Print value at rank 0.
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Problem 2

1. Fill arrays a[], b[] at rank 0.

2. Send arrays to rank 1.

3. Sum elements of arrays at rank 1 and print.
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Problem 3

1. Broadcast array to 8 processes.

2. Print array at odd ranked processes.
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Problem 4

1. Construct a NxN Matrix with each element equal to 1 and N = 200
on process 0.

2. Construct a Vector V of size N = 200 with each element equal to 1
on process 0.

3. Partition the Matrix for 8 processes and send partitioned Matrix rows
to each process.

4. Send vector V to each process.

5. Mutiply partitioned Matrix rows with vector V on each process.
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Problem 5

1. Fill vectors x[], y[] at rank 0.

2. Scatter them to 4 processes.

3. Compute partial dot products on each process and print.
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Problem 6

1. Broadcast vector V to all processes.

2. Undertake Matrix Vector product computation on each process.

3. Gather partial results in a single vector at rank 0.
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Problem 7

1. Partition two vectors (compute start point, end point for partition)

2. Compute local dot product of partitioned vectors on each process.

3. Also print the partition parameters (start point, end point) for each
process.

4. Reduce local dot products to global sum at rank 0 and print the
global sum.
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Thank You
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