
1 Copyright © Tata Consultancy Services Limited

April 29, 2013

Parallelization and Optimization Group
TATA Consultancy Services, Sahyadri Park Pune, India

©TCS all rights reserved

HPC Parallel Programing
Multi-node Computation with MPI - I

2 Copyright © Tata Consultancy Services Limited

Multi node environment

Node 0

Memory

Node 1

Memory

Node 2

Memory

Node 3

Memory

Core Core

Core Core

4 Nodes in a network

3 Copyright © Tata Consultancy Services Limited

HPC in Cryptanalysis

A
p

p
lia

n
c
e

• GSM Cipher breaking
• 6 x 106 CPU hours of one

time computation
• 160 CPU hours of

computation and 230
searches in 5 – 10 TB data
required to be accomplished
in real time

4 Copyright © Tata Consultancy Services Limited

High Lift System Analysis - Boeing Research Project

 Grid Size 60 M Cells

 Time taken 24 hours on 256 cores

5 Copyright © Tata Consultancy Services Limited

MPI World

#include <stdio.h>

#include <stdlib.h>

#include <mpi.h>

int main (int argc, char *argv[])

{

 int id; // process rank

 int p; // number of processes

 char hostname[128];

 gethostname(hostname,128);

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &id);

 MPI_Comm_size(MPI_COMM_WORLD, &p);

 printf("I am rank: %d out of %d

 \n", id, p);

 MPI_Finalize();

 return 0;

}

Output –

$ I am rank: 0 out of 4

I am rank: 3 out of 4

I am rank: 1 out of 4

I am rank: 2 out of 4

6 Copyright © Tata Consultancy Services Limited

Multi node computations

Outline

• MPI overview

• Point to Point communication

• One to One communication

• Collective communication

• One to all, All to one & All to All

• Tools for MPI

7 Copyright © Tata Consultancy Services Limited

Point to Point Communication
Send and Receive

May 9, 2013

8 Copyright © Tata Consultancy Services Limited

Computational Problem

• The Matrix – Vector product

• Size MxM for some large M

• For row = 0 to M

• row*vec

• Typically computed sequentially

• Multi threaded solution

• What if memory is not sufficient

• We have N compute nodes

• Partitioning of data

• Data communication

• Message Passing Interface

Overview

=

Matrix M Vector V Result R

9 Copyright © Tata Consultancy Services Limited

Message passing Interface – MPI

• Message Passing Interface

• A standard

• Implementations

• Commercial – HP MPI, IBM MPI

• Open Source – OpenMPI, mvapich, mpich

• Similarity with threads – parallel execution

10 Copyright © Tata Consultancy Services Limited

MPI – First encounter

MPI Start and finish
int MPI_Init (int *argc, char **argv)

int MPI_Finalize (void)

Information for calculations
int MPI_Comm_size (MPI_Comm comm, int *size)

int MPI_Comm_rank (MPI_Comm comm, int *rank)

11 Copyright © Tata Consultancy Services Limited

First Program

#include <stdio.h>

#include <stdlib.h>

#include <mpi.h>

int main (int argc, char *argv[])

{

 int id; // process rank

 int p; // number of processes

 char hostname[128];

 gethostname(hostname,128);

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &id);

 MPI_Comm_size(MPI_COMM_WORLD, &p);

 printf("I am rank: %d out of %d

 \n", id, p);

 MPI_Finalize(); // To be called

 last

and once

 return 0;

}

Compile –

$ mpicc my_first_mpi.c -o

run.out

Run –

$ mpirun –np <num_cpu>

./run.out

Output –

$ I am rank: 2 out of num_cpu

12 Copyright © Tata Consultancy Services Limited

Matrix – Vector product

• M x M matrix for large M

• P compute nodes

• Partitioning of data, How?

• M/P rows to each node

• Vector V to all

• Message Passing Interface

• MPI Send and receive

• Performance gain ?

• What factor?

• Data transfer between nodes

• Communication cost ?

=

Matrix M Vector V Result R

13 Copyright © Tata Consultancy Services Limited

Matrix – Vector Distribution

Node 0

Memory

C0 C1

Node 1

Memory

C0 C1

Node 2

Memory

C0 C1

Node 3

Memory

C0 C1

14 Copyright © Tata Consultancy Services Limited

MPI Send and Recv

Node 0

Memory

C0 C1

Comm 0

Memory

Comm 1

Memory

Node 1

Memory

C0 C1

Send T1

Transmit T2

Recv T3

15 Copyright © Tata Consultancy Services Limited

Communication cost

• Lets measure different timing in send/recv process

• Cost involved in data send is (T1+T2+T3)

Timing in µsec

Round Trip One way Avg

1 char 3 1

10 chars 126 61

100 chars 926 467

16 Copyright © Tata Consultancy Services Limited

MPI_Send & MPI_Recv

MPI Send and Recv (Blocking calls)

MPI_Send(void* data, int count, MPI_Datatype

datatype, int destination, int tag, MPI_Comm

communicator)

MPI_Recv(void* data, int count, MPI_Datatype

datatype, int source, int tag, MPI_Comm

communicator, MPI_Status* status)

17 Copyright © Tata Consultancy Services Limited

MPI Send and Recv

#include <stdio.h>

#include <stdlib.h>

#include <mpi.h>

int main (int argc, char *argv[])

{

 int id; // process rank

 int p; // number of processes

 int send_buff, recv_buff;

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &id);

 MPI_Comm_size(MPI_COMM_WORLD, &p);

 if(0 == id)

 {

 send_buff = 10;

 MPI_Send(&send_buff, 1, MPI_INT, 1, TAG, MPI_COMM_WORLD);

 }

 if(1 == id)

 {

 MPI_Recv(&recv_buff, 1, MPI_INT, 0, TAG, MPI_COMM_WORLD,

 &Status);

 }

 MPI_Finalize();

 return 0;

}

Things to remember

• Same program runs on each

rank

• All ranks should have space

allocated for recv_buff before

actual recv call

18 Copyright © Tata Consultancy Services Limited

Matrix – Vector product with MPI

MV_SendRecv.c

19 Copyright © Tata Consultancy Services Limited

Summary

• Lets summarize

• Introduction to MPI

• Basic construct

• Parallel computation comes with communication

• Communication cost

• Data send and receive

• Matrix – Vector dot product using MPI

20 Copyright © Tata Consultancy Services Limited

Non blocking Send and Recv

• Cost involved in data send/recv is (T1+T2+T3)

• Process blocks till data is copied to/from comm buffer

• Can we do some thing else during this time?

• Yes

• Sender and receiver both can work on other tasks

• Non blocking calls

• MPI_Isend & MPI_Irecv

21 Copyright © Tata Consultancy Services Limited

MPI_Isend & MPI_Irecv

MPI Isend and Irecv (Non Blocking calls)

MPI_Isend(void *buf, int count, MPI_Datatype

datatype, int dest, int tag, MPI_Comm comm,

 MPI_Request *request)

MPI_Irecv(void *buf, int count, MPI_Datatype

datatype, int source, int tag, MPI_Comm comm,

 MPI_Request *request)

22 Copyright © Tata Consultancy Services Limited

Example

#include <stdio.h>

#include <unistd.h>

#include <mpi.h>

int main (int argc, char *argv[])

{

 int id; // process rank

 int p; // number of processes

 int send_buff, recv_buff;

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &id);

 MPI_Comm_size(MPI_COMM_WORLD, &p);

 if(0 == id)

 {

 send_buff = 10;

 MPI_Isend(&send_buff, 1, MPI_INT, 1, TAG, MPI_COMM_WORLD,

 &reqs[tag1]);

 my_task();

 }

 if(1 == id)

 MPI_Recv(&recv_buff, 1, MPI_INT, 0, TAG, MPI_COMM_WORLD,

 &Status);

 MPI_Finalize();

 return 0;

}

23 Copyright © Tata Consultancy Services Limited

Example

• Lets consider an example where

we send a buffer and also need to

do some computation

• MPI_Send(&buff, …)

• Computation
For(i = 0; i < M; i++)

c[i] = a[i] + b[i];

Program Time in

µsec

With

MPI_Send

54430

With

MPI_Isend

18488

24 Copyright © Tata Consultancy Services Limited

Thank You

May 9, 2013

1 Copyright © Tata Consultancy Services Limited

HPC Parallel Programing
Multi-node Computation with MPI - II

April 29, 2013

Parallelization and Optimization Group
TATA Consultancy Services, Sahyadri Park Pune, India

©TCS all rights reserved

2 Copyright © Tata Consultancy Services Limited

Multi node computations

Outline

• Collective communication

• One to all, all to one, all to all

• Barrier, Broadcast, Gather, Scatter, All gather,

Reduce

3 Copyright © Tata Consultancy Services Limited

MPI Collectives – Part I
One to All communication

May 9, 2013

4 Copyright © Tata Consultancy Services Limited

Collective Constructs

• So far we have seen point to point communication

• One source and one destination

• MPI_Send(), MPI_Recv

• Communication involving all processes

• One to all, all to all, all to one

• Challenge?

• Synchronization

• Read modify write operations

• All processes must reach a common point

• Barrier

5 Copyright © Tata Consultancy Services Limited

MPI Barrier

0

2

3

1

T4

0

1

2

3

T1

MPI_Barrier()

T2

MPI_Barrier()

0

2

3

1

T3

MPI_Barrier()

0

2

3

1

6 Copyright © Tata Consultancy Services Limited

MPI Barrier

MPI Construct
MPI_Barrier(MPI_Comm communicator)

for (i = 0; i < num_trials; i++)

{

 //Synchronize before starting

 MPI_Barrier(MPI_COMM_WORLD);

 my_mpi_function();

 // Synchronize again

 MPI_Barrier(MPI_COMM_WORLD);

}

7 Copyright © Tata Consultancy Services Limited

Matrix – Vector Product problem

• Matrix – Vector product

• Matrix M, vector V & result

vector R

• R = matvec_prod(M, V)

• On multi-node (P) setup?

• Data distribution

• Distribute rows (M/P) to

each node

• Vector V to all

Overview

=

Matrix M

8 Copyright © Tata Consultancy Services Limited

MPI Broadcast

0

1 2 3 4 5 6 7

• Process 0 sends data to all

• Obvious choice

• MPI_Send()

9 Copyright © Tata Consultancy Services Limited

MPI Broadcast

if(0 == id)

{

 send_buff = 10;

 for (i = 1, i < num_procs; i++)

 MPI_Send(&send_buff, 1, MPI_INT, i, TAG,

 MPI_COMM_WORLD);

}

else

 MPI_Recv(&recv_buff, 1, MPI_INT, 0, TAG, MPI_COMM_WORLD,

 &status);

• Process 0 sends data to all

• Is it good enough?

• Can we do better?

• Yes

• Loop is using only 1 network link (0 to other nodes)

10 Copyright © Tata Consultancy Services Limited

MPI Broadcast

0

1 2

3 4 5 6 7

• Tree based approach is much more efficient

• More network links get utilized

• MPI provides a construct for this

• MPI_Bcast (MPI Broadcast)

11 Copyright © Tata Consultancy Services Limited

MPI Broadcast

0

1 2 3 4 5 6 7

MPI_Bcast

MPI Construct
MPI_Bcast(void* data, int count,

MPI_Datatype datatype, int root, MPI_Comm

communicator)

12 Copyright © Tata Consultancy Services Limited

Efficiency

• Comparison of broadcast with MPI_Bcast() & My_Bcast()

• My_Bcast()

• For loop MPI_Send() & MPI_Recv()

Num of

Processors

My_Bcast MPI_Bcast()

Timing in µ sec

2 132 60

4 147 66

8 3162 117

16 17985 136

13 Copyright © Tata Consultancy Services Limited

First Example

#include <stdio.h>

#include <stdlib.h>

#include <mpi.h>

int main (int argc, char *argv[])

{

 int id; // process rank

 int p; // number of processes

 int send_buff;

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &id);

 MPI_Comm_size(MPI_COMM_WORLD, &p);

 if(0 == id)

 send_buff = 10;

 MPI_Bcast(&send_buff, 1, MPI_INT, 0, MPI_COMM_WORLD);

 MPI_Finalize();

 return 0;

}

14 Copyright © Tata Consultancy Services Limited

Summary

• Synchronization of process

• MPI_Barrier()

• Collective communication

• One to all

• My broadcast using MPI send/recv

• MPI Broadcast – MPI_Bcast()

• Tree based approach

• Efficient

• First example using MPI_Bcast()

15 Copyright © Tata Consultancy Services Limited

Back to Matrix – Vector product

• Our partitioning approach

• Each process gets M/P

rows and full vector V

• What can we broadcast?

• Rows of M or vector V or both?

• Vector V

• Our strategy would be

• Process 0 sends M/P rows

to each

• Broadcast V to all

• Each computes M/P

elements of result vector

=

M/P rows

Vector V

16 Copyright © Tata Consultancy Services Limited

Matrix – Vector product

• We have all the inputs for Matrix-Vector product program

• So lets explore Matrix-vector product using MPI_Bcast()

Mv_bcast.c

17 Copyright © Tata Consultancy Services Limited

Thank You

May 9, 2013

HPC Parallel Programing Multi-node Computation
with MPI - III

Parallelization and Optimization Group
TATA Consultancy Services, SahyadriPark Pune, India

May 9, 2013

TATA Consultancy Services, Experience Certainity 1 c©All rights reserved

Discussions thus far: MV product

1. Matrix vector product parallel implementation.

2. Each process broadcasted vector V.

TATA Consultancy Services, Experience Certainity 2 c©All rights reserved

Matrix Vector product

1. N rows, P processes.

2. Each process gets N/P rows for local computation.

3. Data can be sent to each process using send receive routines.

4. Will involve multiple pairs of data exchange among each process.

5. Scatter rows using MPI Scatter

TATA Consultancy Services, Experience Certainity 3 c©All rights reserved

Matrix Vector product

1. N rows, P processes.

2. Each process gets N/P rows for local computation.

3. Data can be sent to each process using send receive routines.

4. Will involve multiple pairs of data exchange among each process.

5. Scatter rows using MPI Scatter

TATA Consultancy Services, Experience Certainity 3 c©All rights reserved

Matrix Vector product

1. N rows, P processes.

2. Each process gets N/P rows for local computation.

3. Data can be sent to each process using send receive routines.

4. Will involve multiple pairs of data exchange among each process.

5. Scatter rows using MPI Scatter

TATA Consultancy Services, Experience Certainity 3 c©All rights reserved

MPI Scatter

1. Distributes equal sized chunks of data from a root process to other
processes within a group.

2. Distribution of data is taken care internally and sent in order of ranks.

TATA Consultancy Services, Experience Certainity 4 c©All rights reserved

MPI Scatter

1. Distributes equal sized chunks of data from a root process to other
processes within a group.

2. Distribution of data is taken care internally and sent in order of ranks.

TATA Consultancy Services, Experience Certainity 4 c©All rights reserved

MPI Scatter

MPI Scatter (&sendbuf, sendcnt, sendtype, &recvbuf, recvcnt, recvtype,
root, comm)

1. sendbuf (starting address of send buffer)

2. sendcount (num elements sent to each process)

3. sendtype (type)

4. recvbuf (address of receive buffer)

5. recvcount (num elements in receive buffer)

6. recvtype (data type of receive elements)

7. root (rank of sending process)

8. comm (communicator)

TATA Consultancy Services, Experience Certainity 5 c©All rights reserved

Scattering Matrix

1 f l o a t A[N] [N] , Ap [N/P] [N] , b [N] ;
2
3 r oo t = 0 ;
4
5 MPI Scat te r (A, N/P∗N, MPI Float , Ap , N/P∗N, MPI Float , root ,

MPI COMM WORLD) ;

TATA Consultancy Services, Experience Certainity 6 c©All rights reserved

Matrix Vector product

1. Partial results on each prosess: N / P rows multiplied with vector V.

2. Partial results from individual processes need to be assembled to one
process.

3. Can be achieved using MPI Gather.

TATA Consultancy Services, Experience Certainity 7 c©All rights reserved

Matrix Vector product

1. Partial results on each prosess: N / P rows multiplied with vector V.

2. Partial results from individual processes need to be assembled to one
process.

3. Can be achieved using MPI Gather.

TATA Consultancy Services, Experience Certainity 7 c©All rights reserved

Matrix Vector product

1. Partial results on each prosess: N / P rows multiplied with vector V.

2. Partial results from individual processes need to be assembled to one
process.

3. Can be achieved using MPI Gather.

TATA Consultancy Services, Experience Certainity 7 c©All rights reserved

MPI Gather

1. MPI Gather collects results from individual processes to a root
process.

2. Send receive routines would require multiple pairs of data exchange.

3. MPI Gather (&sendbuf, sendcnt, sendtype, &recvbuf, recvcount,
recvtype, root, comm)

TATA Consultancy Services, Experience Certainity 8 c©All rights reserved

MPI Gather

1. MPI Gather collects results from individual processes to a root
process.

2. Send receive routines would require multiple pairs of data exchange.

3. MPI Gather (&sendbuf, sendcnt, sendtype, &recvbuf, recvcount,
recvtype, root, comm)

TATA Consultancy Services, Experience Certainity 8 c©All rights reserved

MPI Gather

1. MPI Gather collects results from individual processes to a root
process.

2. Send receive routines would require multiple pairs of data exchange.

3. MPI Gather (&sendbuf, sendcnt, sendtype, &recvbuf, recvcount,
recvtype, root, comm)

TATA Consultancy Services, Experience Certainity 8 c©All rights reserved

MPI Gather

1. MPI Gather collects results from individual processes to a root
process.

2. Send receive routines would require multiple pairs of data exchange.

3. MPI Gather (&sendbuf, sendcnt, sendtype, &recvbuf, recvcount,
recvtype, root, comm)

TATA Consultancy Services, Experience Certainity 8 c©All rights reserved

Gather MV product elements

1 f l o a t A[N] [N] , Ap [N/P] [N] , b [N] , c [N] , cp [N/P] ;
2
3 f o r (i = 1 ; i < N/P ; i++)
4 {
5 cp [i] = 0 ;
6 f o r (k = 0 ; k < N; k++)
7 cp [i] = cp [i] + Ap [i] [k] ∗ b [k] ;
8 }
9 MPI Gather (cp , N/P , MPI Float , c , N/P , MPI Float , root ,

10 MPI COMM WORLD) ;

TATA Consultancy Services, Experience Certainity 9 c©All rights reserved

Scatter - Gather

TATA Consultancy Services, Experience Certainity 10 c©All rights reserved

Summary

What we covered yet :

1. MPI Scatter: distributuion of data to multiple processes.

2. MPI Gather: collect multiple process results to one process.

Some more collectives :

1. MPI AllGather

2. MPI Reduce

3. MPI All Reduce

4. MPI AlltoAll

TATA Consultancy Services, Experience Certainity 11 c©All rights reserved

Summary

What we covered yet :

1. MPI Scatter: distributuion of data to multiple processes.

2. MPI Gather: collect multiple process results to one process.

Some more collectives :

1. MPI AllGather

2. MPI Reduce

3. MPI All Reduce

4. MPI AlltoAll

TATA Consultancy Services, Experience Certainity 11 c©All rights reserved

Summary

What we covered yet :

1. MPI Scatter: distributuion of data to multiple processes.

2. MPI Gather: collect multiple process results to one process.

Some more collectives :

1. MPI AllGather

2. MPI Reduce

3. MPI All Reduce

4. MPI AlltoAll

TATA Consultancy Services, Experience Certainity 11 c©All rights reserved

Summary

What we covered yet :

1. MPI Scatter: distributuion of data to multiple processes.

2. MPI Gather: collect multiple process results to one process.

Some more collectives :

1. MPI AllGather

2. MPI Reduce

3. MPI All Reduce

4. MPI AlltoAll

TATA Consultancy Services, Experience Certainity 11 c©All rights reserved

Summary

What we covered yet :

1. MPI Scatter: distributuion of data to multiple processes.

2. MPI Gather: collect multiple process results to one process.

Some more collectives :

1. MPI AllGather

2. MPI Reduce

3. MPI All Reduce

4. MPI AlltoAll

TATA Consultancy Services, Experience Certainity 11 c©All rights reserved

Summary

What we covered yet :

1. MPI Scatter: distributuion of data to multiple processes.

2. MPI Gather: collect multiple process results to one process.

Some more collectives :

1. MPI AllGather

2. MPI Reduce

3. MPI All Reduce

4. MPI AlltoAll

TATA Consultancy Services, Experience Certainity 11 c©All rights reserved

Summary

What we covered yet :

1. MPI Scatter: distributuion of data to multiple processes.

2. MPI Gather: collect multiple process results to one process.

Some more collectives :

1. MPI AllGather

2. MPI Reduce

3. MPI All Reduce

4. MPI AlltoAll

TATA Consultancy Services, Experience Certainity 11 c©All rights reserved

MPI All Gather

1. Gathers data from all tasks and distribute the combined data to all
tasks.

2. MPI Allgather (&sendbuf, sendcount, sendtype, &recvbuf, recvcount,
recvtype, comm)

TATA Consultancy Services, Experience Certainity 12 c©All rights reserved

MPI All Gather

1. Gathers data from all tasks and distribute the combined data to all
tasks.

2. MPI Allgather (&sendbuf, sendcount, sendtype, &recvbuf, recvcount,
recvtype, comm)

TATA Consultancy Services, Experience Certainity 12 c©All rights reserved

MPI All Gather

1
2 f l o a t A[N] [N] , Ap [N/P] [N] , b [N] , c [N] , cp [N/P] ;
3
4 f o r (i = 1 ; i < N/P ; i++)
5
6 {
7 cp [i] = 0 ;
8 f o r (k = 0 ; k < N; k++)
9 cp [i] = cp [i] + Ap [i] [k] ∗ b [k] ;

10
11 }
12 MPI Al lGathe r (cp , N/P , MPI Float , c , N/P , MPI Float ,
13 MPI COMM WORLD) ;

TATA Consultancy Services, Experience Certainity 13 c©All rights reserved

Problem : Inner Product of two Vectors

dotProduct = a1 * b1 + a2 * b2 + a3 * b3 +

1. Computation of local sums with multiple processes

2. Gathering of local sums to process root.

3. Summation of local sums on process root.

4. Gathering of data and summation can be combined using
MPI Reduce.

TATA Consultancy Services, Experience Certainity 14 c©All rights reserved

Problem : Inner Product of two Vectors

dotProduct = a1 * b1 + a2 * b2 + a3 * b3 +

1. Computation of local sums with multiple processes

2. Gathering of local sums to process root.

3. Summation of local sums on process root.

4. Gathering of data and summation can be combined using
MPI Reduce.

TATA Consultancy Services, Experience Certainity 14 c©All rights reserved

Problem : Inner Product of two Vectors

dotProduct = a1 * b1 + a2 * b2 + a3 * b3 +

1. Computation of local sums with multiple processes

2. Gathering of local sums to process root.

3. Summation of local sums on process root.

4. Gathering of data and summation can be combined using
MPI Reduce.

TATA Consultancy Services, Experience Certainity 14 c©All rights reserved

Problem : Inner Product of two Vectors

dotProduct = a1 * b1 + a2 * b2 + a3 * b3 +

1. Computation of local sums with multiple processes

2. Gathering of local sums to process root.

3. Summation of local sums on process root.

4. Gathering of data and summation can be combined using
MPI Reduce.

TATA Consultancy Services, Experience Certainity 14 c©All rights reserved

Problem : Inner Product of two Vectors

dotProduct = a1 * b1 + a2 * b2 + a3 * b3 +

1. Computation of local sums with multiple processes

2. Gathering of local sums to process root.

3. Summation of local sums on process root.

4. Gathering of data and summation can be combined using
MPI Reduce.

TATA Consultancy Services, Experience Certainity 14 c©All rights reserved

Problem : Inner Product of two Vectors

dotProduct = a1 * b1 + a2 * b2 + a3 * b3 +

1. Computation of local sums with multiple processes

2. Gathering of local sums to process root.

3. Summation of local sums on process root.

4. Gathering of data and summation can be combined using
MPI Reduce.

TATA Consultancy Services, Experience Certainity 14 c©All rights reserved

MPI Reduce

1. Applies a reduction operation on all tasks in the group and places the
result in one task.

2. Operations like sum, product etc can be performed on the gathered
data.

3. MPI Reduce (&sendbuf,&recvbuf, count, datatype, op, root, comm)

TATA Consultancy Services, Experience Certainity 15 c©All rights reserved

MPI Reduce

1. Applies a reduction operation on all tasks in the group and places the
result in one task.

2. Operations like sum, product etc can be performed on the gathered
data.

3. MPI Reduce (&sendbuf,&recvbuf, count, datatype, op, root, comm)

TATA Consultancy Services, Experience Certainity 15 c©All rights reserved

MPI Reduce

1. Applies a reduction operation on all tasks in the group and places the
result in one task.

2. Operations like sum, product etc can be performed on the gathered
data.

3. MPI Reduce (&sendbuf,&recvbuf, count, datatype, op, root, comm)

TATA Consultancy Services, Experience Certainity 15 c©All rights reserved

MPI Reduce

1. Applies a reduction operation on all tasks in the group and places the
result in one task.

2. Operations like sum, product etc can be performed on the gathered
data.

3. MPI Reduce (&sendbuf,&recvbuf, count, datatype, op, root, comm)

TATA Consultancy Services, Experience Certainity 15 c©All rights reserved

MPI Reduce

1 l o c n = n/p ;
2 bn = 1 + (my rank) ∗ l o c n ;
3 en = bn + loc n −1;
4 l o c d o t = 0 . 0 ;
5 f o r (i = bn ; i <= en ; i++) {
6 l o c d o t = l o c d o t + a [i]∗ b [i] ;
7 }
8
9 MPI Reduce(& l o c do t , &globa l sum , 1 , MPI FLOAT , MPI SUM, 0 ,

MPI COMM WORLD) ;

TATA Consultancy Services, Experience Certainity 16 c©All rights reserved

MPI All Reduce

1. Applies a reduction operation and places the result in all tasks in the
group.

2. This is equivalent to an MPI Reduce followed by an MPI Bcast.

3. MPI Allreduce (&sendbuf, &recvbuf, count, datatype, op, comm)

TATA Consultancy Services, Experience Certainity 17 c©All rights reserved

MPI All Reduce

1. Applies a reduction operation and places the result in all tasks in the
group.

2. This is equivalent to an MPI Reduce followed by an MPI Bcast.

3. MPI Allreduce (&sendbuf, &recvbuf, count, datatype, op, comm)

TATA Consultancy Services, Experience Certainity 17 c©All rights reserved

MPI All Reduce

1. Applies a reduction operation and places the result in all tasks in the
group.

2. This is equivalent to an MPI Reduce followed by an MPI Bcast.

3. MPI Allreduce (&sendbuf, &recvbuf, count, datatype, op, comm)

TATA Consultancy Services, Experience Certainity 17 c©All rights reserved

MPI All Reduce

1. Applies a reduction operation and places the result in all tasks in the
group.

2. This is equivalent to an MPI Reduce followed by an MPI Bcast.

3. MPI Allreduce (&sendbuf, &recvbuf, count, datatype, op, comm)

TATA Consultancy Services, Experience Certainity 17 c©All rights reserved

MPI All to All

1. Each task in a group performs a scatter operation, sending a distinct
message to all the tasks in the group in order by index.

2. MPI Alltoall (&sendbuf,sendcount,sendtype,&recvbuf,
recvcnt,recvtype,comm)

3. Matrix transpose implementation for matrix distributed among several
processors.

TATA Consultancy Services, Experience Certainity 18 c©All rights reserved

MPI All to All

1. Each task in a group performs a scatter operation, sending a distinct
message to all the tasks in the group in order by index.

2. MPI Alltoall (&sendbuf,sendcount,sendtype,&recvbuf,
recvcnt,recvtype,comm)

3. Matrix transpose implementation for matrix distributed among several
processors.

TATA Consultancy Services, Experience Certainity 18 c©All rights reserved

MPI All to All

1. Each task in a group performs a scatter operation, sending a distinct
message to all the tasks in the group in order by index.

2. MPI Alltoall (&sendbuf,sendcount,sendtype,&recvbuf,
recvcnt,recvtype,comm)

3. Matrix transpose implementation for matrix distributed among several
processors.

TATA Consultancy Services, Experience Certainity 18 c©All rights reserved

MPI AlltoAll

1 i n t myrank , nprocs , n l , n , i , j ;
2 f l o a t ∗data , ∗ d a t a l
3
4 /∗ l o c a l a r r a y s i z e on each proc = n l ∗/
5 d a t a l = (f l o a t ∗) ma l l o c (n l ∗ s i z e o f (f l o a t) ∗ nproc s) ;
6
7 f o r (i = 0 ; i < n l ∗ nproc s ; ++i)
8 d a t a l [i] = myrank ;
9

10 data = (f l o a t ∗) ma l l o c (np roc s ∗ s i z e o f (f l o a t) ∗ n l) ;
11
12 MP I A l l t o a l l (d a t a l , n l , MPI FLOAT , data , n l , MPI FLOAT ,

MPI COMM WORLD) ;

TATA Consultancy Services, Experience Certainity 19 c©All rights reserved

Summary

1. All to One: MPI Gather, MPI Reduce

2. One to All: MPI Scatter

3. All to All: MPI AllGather, MPI Allreduce, MPI AlltoAll

4. Collective routines reduce implementation comlexity efficiently.

TATA Consultancy Services, Experience Certainity 20 c©All rights reserved

Summary

1. All to One: MPI Gather, MPI Reduce

2. One to All: MPI Scatter

3. All to All: MPI AllGather, MPI Allreduce, MPI AlltoAll

4. Collective routines reduce implementation comlexity efficiently.

TATA Consultancy Services, Experience Certainity 20 c©All rights reserved

Summary

1. All to One: MPI Gather, MPI Reduce

2. One to All: MPI Scatter

3. All to All: MPI AllGather, MPI Allreduce, MPI AlltoAll

4. Collective routines reduce implementation comlexity efficiently.

TATA Consultancy Services, Experience Certainity 20 c©All rights reserved

Summary

1. All to One: MPI Gather, MPI Reduce

2. One to All: MPI Scatter

3. All to All: MPI AllGather, MPI Allreduce, MPI AlltoAll

4. Collective routines reduce implementation comlexity efficiently.

TATA Consultancy Services, Experience Certainity 20 c©All rights reserved

Summary

1. All to One: MPI Gather, MPI Reduce

2. One to All: MPI Scatter

3. All to All: MPI AllGather, MPI Allreduce, MPI AlltoAll

4. Collective routines reduce implementation comlexity efficiently.

TATA Consultancy Services, Experience Certainity 20 c©All rights reserved

Summary

1. All to One: MPI Gather, MPI Reduce

2. One to All: MPI Scatter

3. All to All: MPI AllGather, MPI Allreduce, MPI AlltoAll

4. Collective routines reduce implementation comlexity efficiently.

TATA Consultancy Services, Experience Certainity 20 c©All rights reserved

Thank You

TATA Consultancy Services, Experience Certainity 21 c©All rights reserved

MPI: Assignments

Parallelization and Optimization Group
TATA Consultancy Services, SahyadriPark Pune, India

May 9, 2013

TATA Consultancy Services, Experience Certainity 1 c©All rights reserved

General Instructions

1. The assignment consists of a set of problem codes.

2. Each code is written partially.

3. The codes need to be written completely, wherever indicated with
comments.

4. The codes need to be compiled and excecuted.

5. Instructions for each problem are indicated in the following slides.

TATA Consultancy Services, Experience Certainity 2 c©All rights reserved

Problem 1

1. Send one double value from rank 0.

2. Receive value at rank 1.

3. Print value at rank 0.

TATA Consultancy Services, Experience Certainity 3 c©All rights reserved

Problem 2

1. Fill arrays a[], b[] at rank 0.

2. Send arrays to rank 1.

3. Sum elements of arrays at rank 1 and print.

TATA Consultancy Services, Experience Certainity 4 c©All rights reserved

Problem 3

1. Broadcast array to 8 processes.

2. Print array at odd ranked processes.

TATA Consultancy Services, Experience Certainity 5 c©All rights reserved

Problem 4

1. Construct a NxN Matrix with each element equal to 1 and N = 200
on process 0.

2. Construct a Vector V of size N = 200 with each element equal to 1
on process 0.

3. Partition the Matrix for 8 processes and send partitioned Matrix rows
to each process.

4. Send vector V to each process.

5. Mutiply partitioned Matrix rows with vector V on each process.

TATA Consultancy Services, Experience Certainity 6 c©All rights reserved

Problem 5

1. Fill vectors x[], y[] at rank 0.

2. Scatter them to 4 processes.

3. Compute partial dot products on each process and print.

TATA Consultancy Services, Experience Certainity 7 c©All rights reserved

Problem 6

1. Broadcast vector V to all processes.

2. Undertake Matrix Vector product computation on each process.

3. Gather partial results in a single vector at rank 0.

TATA Consultancy Services, Experience Certainity 8 c©All rights reserved

Problem 7

1. Partition two vectors (compute start point, end point for partition)

2. Compute local dot product of partitioned vectors on each process.

3. Also print the partition parameters (start point, end point) for each
process.

4. Reduce local dot products to global sum at rank 0 and print the
global sum.

TATA Consultancy Services, Experience Certainity 9 c©All rights reserved

Acknowledgements

The Parallelization and Optimization group of the TCS HPC group have
created and delivered this HPC training. The specific people who have
contributed are:

1. OpenMP presentation and Cache/OpenMP assignments: Anubhav
Jain, Pthreads presentation: Ravi Teja.

2. Tools presentation and Demo: Rihab, Himanshu, Ravi Teja and Amit
Kalele.

3. MPI presentation: Amit Kalele and Shreyas.

4. Cache assignments: Mastan Shaik.

5. Computer and Cluster Architecture and Sequential Optimization using
cache.Multicore Synchronization, Multinode Infiniband introduction
and general coordination and overall review: Dhananjay Brahme.

TATA Consultancy Services, Experience Certainity 10 c©All rights reserved

Thank You

TATA Consultancy Services, Experience Certainity 11 c©All rights reserved

