
Compiler flags for Optimization

GCC compiler

Tata Consultancy Services

30 April 2013

IUCAA workshop - GCC optimization c©All rights reserved 30 April 2013 1 / 12

Speed-space tradeoff

Some forms of optimization are able to both increase the speed of
execution, and reduce the size of the executable

Other types of optimization may produce faster code at the expense
of increasing the executable size, or vice versa.

Loop unrolling

for(i=0; i<8; i++) {
y[i] = i;

}

IUCAA workshop - GCC optimization c©All rights reserved 30 April 2013 2 / 12

Speed-space tradeoff

After optimization

y[0] = 0;
y[1] = 1;
y[2] = 2;
y[3] = 3;
y[4] = 4;
y[5] = 5;
y[6] = 6;
y[7] = 7;

Reduces the execution speed of the executabe but increases the
executable size

IUCAA workshop - GCC optimization c©All rights reserved 30 April 2013 3 / 12

Speed-space tradeoff

Common subexpression elimination

x = cos(v)*(1+sin(u/2)) + sin(w)*(1-sin(u/2));

After optimization

t = sin(u/2);
x = cos(v)*(1+t) + sin(w)*(1-t);

Improves the performance of the executable but does not increase the
size

IUCAA workshop - GCC optimization c©All rights reserved 30 April 2013 4 / 12

Speed-space tradeoff

Function inlining

double sq(double sq) {
return x*x; }

for(i=0; i<1000000; i++) {
sum+=sq(i+0.5); }

After optimization

for(i=0; i<1000000; i++) {
double t = (i+0.5);
sum+=t*t;

}

IUCAA workshop - GCC optimization c©All rights reserved 30 April 2013 5 / 12

Scheduling

Lowest level of optimization done by the compiler

Optimization w.r.t the order of execution of individual instructions in
the CPU, taking into account CPU characteristics such as pipelining.

Improves speed without increasing the executable size

But requires more time and more memory for compilation (due to
complexity)

IUCAA workshop - GCC optimization c©All rights reserved 30 April 2013 6 / 12

Optimization levels in gcc

gcc provides a no.of general optimization levels, 0-3, as well as
individual options for specific optimizations.

-O0 (default)

no optimization done by the compiler.
best to use when debugging.

-O1

turns on the most common forms of optimization which do not have
speed-space tradeoffs.
i.e. with this optimization, the executable will be smaller and faster
compared to that with -O0.
Compiling with -O1 generally takes less time than that with -O0 due to
reduced amount of data that needs to be processed after optimizations.

IUCAA workshop - GCC optimization c©All rights reserved 30 April 2013 7 / 12

Optimization levels in gcc

-O2

turns on further optimizations without any speed-space tradeoff. These
include instruction scheduling.
compiler will take more time and more memory to compile compared to
-O1.
maximum optimization without increase in executable size.
best to use for deployment.

-O3

turns on more expensive optimizations such as function inlining.
speed-space tradeoff not guaranteed.
It may increase the speed of the executable, but also increase the size.

IUCAA workshop - GCC optimization c©All rights reserved 30 April 2013 8 / 12

Optimization levels in gcc

-funroll-loops

turns on loop unrolling.
independent of the previous optimizations.
will increase the size of the executable.

-Os

selects optimizations which reduce the size of the executable.
for systems constrained by memory or disk space.
in some cases, may run faster due to better cache usage.

-ftree-vectorize

enables vectorization.
enabled by default at O3.

IUCAA workshop - GCC optimization c©All rights reserved 30 April 2013 9 / 12

Example programs

IUCAA workshop - GCC optimization c©All rights reserved 30 April 2013 10 / 12

Example programs

IUCAA workshop - GCC optimization c©All rights reserved 30 April 2013 11 / 12

References

http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Brian Gough, An Introduction to GCC, Chapter 6.

IUCAA workshop - GCC optimization c©All rights reserved 30 April 2013 12 / 12

http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

GNU debugger

GDB

with Multithreaded applications

Tata Consultancy Services

30 April 2013

IUCAA workshop - GDB c©All rights reserved 30 April 2013 1 / 10

Agenda

Introduction to GDB

Using GDB: Basics

Using GDB with multithreaded applications

Examples

IUCAA workshop - GDB c©All rights reserved 30 April 2013 2 / 10

Introduction

gdb stands for ’GNU debugger’.

supports both C and C++.

Enable gdb support by using the -g flag while compiling

Compiling C code

prompt$> gcc -g -other flags source file -o executable

IUCAA workshop - GDB c©All rights reserved 30 April 2013 3 / 10

Basics

Starting gdb: type gdb command at the prompt

prompt$> gdb [executable]

A prompt like the below one appears

(gdb)

Loading a file

(gdb) file executable

Running the executable to be debugged

(gdb) run

IUCAA workshop - GDB c©All rights reserved 30 April 2013 4 / 10

Basics

For help with any command

(gdb) help [command]

Setting breakpoints

(gdb) break sourcecode.c:6

Breaking at a particular function

(gdb) break func name

Conditinal break

(gdb) break func name condition

IUCAA workshop - GDB c©All rights reserved 30 April 2013 5 / 10

Basics

To continue execution till next break point

(gdb) continue

Single stepping: executing only the next line of code

(gdb) step

Single stepping without stepping into a subroutine

(gdb) next

To list the breakpoints already defined

(gdb) info breakpoints

IUCAA workshop - GDB c©All rights reserved 30 April 2013 6 / 10

Basics

To delete a breakpoint

(gdb) delete breakpoint

To print the value of a variable

(gdb) print var

Watching variables: execution breaks whenever value of the variable
changes

(gdb) watch var

IUCAA workshop - GDB c©All rights reserved 30 April 2013 7 / 10

Basics

Trace of function calls: listing the stack frames

(gdb) backtrace

To switch to different stack frame

(gdb) frame frame num

Listing the variables in current frame

(gdb) info locals

IUCAA workshop - GDB c©All rights reserved 30 April 2013 8 / 10

Multithreaded applications

gdb supports multithreaded applications (pthreads, openmp).

Automatically displays message when new threads are created.

To list all the threads

(gdb) info threads

gdb attaches a thread number to each thread. The current thread is
shown with a *.

To switch to a different thread

(gdb) thread thread num

IUCAA workshop - GDB c©All rights reserved 30 April 2013 9 / 10

Multithreaded applications

To break on a particular thread

(gdb) break line no thread thread num

Stopping on a particular thread stops all the other threads also.

To apply a command to multiple threads

(gdb) thread apply all [command]
(gdb) thread apply 2 3 [command]

To watch a variable on a particular thread

(gdb) watch var thread thread num

IUCAA workshop - GDB c©All rights reserved 30 April 2013 10 / 10

Valgrind

 April 30, 2013

Outline :

• Introduction

•Tools

•Using Valgrind

•Memcheck

•Cachegrind

•Valgrind with MPI

•Lab

2

Introduction:

3

• The Valgrind is a tool suite for debugging and profiling memory

• The most popular of these tools is called Memcheck. It can detect many memory-related

errors that are common in C and C++ programs.

• Valgrind translates the program into a Intermediate Representation then instrument the

trace points for debugging.

Valgrind Tools

• memcheck is a tool for fine grained memory checking

• cachegrind provides the details regarding of instructions executed and cache misses

incurred during execution of program

• callgrind adds call graph tracing to cachegrind. It can be used to get call counts and

inclusive cost for each call happening in program

• helgrind spots potential race conditions in your program that use the POSIX pthreads

threading primitives. Problems like timing-dependent crashes, deadlocks and other

misbehaviour are captured by this tool

• massif is a heap profiler. It measures heap memory usages of program

4

Using Valgrind

• Run with valgrind

5

gcc -g filename.c -o run.out

• Compile with -g, avoid using optimization flags (-O2 -O3):

valgrind --tool=tool_name <tool_args> ./run.out <program args >

• Multithreaded programs

 valgrind --trace-children=yes --tool=tool_name <tool_args> ./run.out

<program args >

• Attaching Debugger

valgrind --tool=tool_name <tool_args> --db-attach=yes ./run.out

<program args >

Memcheck: Error Check

Use of uninitialised values

An uninitialised value use error is reported when program uses a value which has not been

initialised .

• Local variables in procedures which have not been initialized

• The contents of malloc'd blocks, before you write something there.

• In C++, the new operator is a wrapper round malloc

6

int main()

{

int x;

printf ("x = %d\n", x);

 }

 In above code snippet, the undefined value is used inside the printf()

Memcheck: Error Checkcont....

Overlapping source and destination blocks

Memcheck checks If program copies some data from one memory block to another that

have overlapping address. memcpy(), strcpy(), strncpy(), strcat(), strncat() are some

functions that can lead such errors.

When a block is freed with an inappropriate deallocation function

 In C++ it's important to deallocate memory in a way compatible with how it was allocated.

• If allocated with malloc, calloc, realloc, valloc or memalign, free must be used

• If allocated with new[], must be deallocated with delete[]

• If allocated with new, must be deallocated with delete

7

Memcheck: Error Checkcont....

Illegal frees

Memcheck keeps track of the blocks allocated by program with malloc/new, so it can know

exactly whether or not the argument to free/delete is legitimate or not.

8

int main()

{

int *array;

array= (int *)malloc(100) ;

free(array);

free(array);

return 0;

 }

 In above code snippet, the array variable has been freed twice

Memcheck: Error Checkcont....

Illegal read / Illegal write errors

This error occurs when program reads or writes memory at a place which was not allocated

9

int main()

{

 int *array;

array= (int *)malloc(100) ;

array[101]=999;

free(array);

return 0;

 }

 In above code snippet, program trying to access the memory of 102th location

Memcheck: Error Checkcont....

 Passing system call parameters with inadequate read/write permissions

Memcheck checks all parameters to system calls. If a system call needs to read from a

buffer provided by program, Memcheck checks that the entire buffer is addressible and

has valid data..

10

#include <stdlib.h>

 #include <unistd.h>

 int main(void) {

char* arr = malloc(10);

(void) write(1, arr, 10);

return 0;

 }

 In above code snippet, the arr variable has junk data

CacheGrind :

Cachegrind performs cache and branching profiling. A Cachegrind profile run measures the

number of cache misses and branch mispredictions performed by an application.

Three Levels of the cache:

• L1

• L2 /L3

Two type of caches

• Data

• Instruction

11

valgrind --tool=cachegrind <program name><program args >

Sample output of cachegrind:

==18232== I refs: 3,489,832,585

==18232== I1 misses: 972

==18232== L2i misses: 970

==18232== I1 miss rate: 0.00%

==18232== L2i miss rate: 0.00%

==18232==

==18232== D refs: 2,415,979,570 (2,147,529,619 rd + 268,449,951 wr)

==18232== D1 misses: 33,556,600 (16,779,049 rd + 16,777,551 wr)

==18232== L2d misses: 33,556,305 (16,778,795 rd + 16,777,510 wr)

==18232== D1 miss rate: 1.3% (0.7% + 6.2%)

==18232== L2d miss rate: 1.3% (0.7% + 6.2%)

==18232==

==18232== L2 refs: 33,557,572 (16,780,021 rd + 16,777,551 wr)

==18232== L2 misses: 33,557,275 (16,779,765 rd + 16,777,510 wr)

==18232== L2 miss rate: 0.5% (0.2% + 6.2%)

12

Valgrind with MPI

• Configure mpi to use valgrind

13

./configure --prefix=/path/to/openmpi --enable-debug --enable-memchecker

--with-valgrind=/path/to/valgrind

• Run the program with valgrind

• Compile the code

mpicc -g -o sample.out sample.c

mpirun –np 2 valgrind <memcheck options> ./sample.out <program args>

Valgrind with MPI…………..cont……..

• Memchecker is implemented on the basis of Memcheck tool from Valgrind, so it takes all

the advantages from it.

• it checks all reads and writes of memory, and intercepts calls to malloc/new/free/delete.

• Memchecker is able to detect the user buffer errors in both Non-blocking and One-sided

communications for the mpi

14

• Accessing buffer under control of non-blocking communication:

15

int buf;

MPI_Irecv(&buf, 1, MPI_INT, 1, 0, MPI_COMM_WORLD, &req);

 buf = 4711;

MPI_Wait (&req, &status);

• Wrong input parameters, e.g. wrongly sized send buffers:

char *send_buffer;

send_buffer = malloc(5);

 memset(send_buffer, 0, 5);

MPI_Send(send_buffer, 10, MPI_CHAR, 1, 0, MPI_COMM_WORLD);

Valgrind with MPI…………..cont……..

• Usage of the uninitialized MPI_Status field in MPI_ERROR structure: (The MPI-1 standard

defines the MPI ERROR-field to be undefined for single-completion calls such as MPI Wait

or MPI Test)

16

MPI_Wait(&request, &status);

if (status.MPI_ERROR != MPI_SUCCESS)

return ERROR;

• Accessing window under control of one-sided communication:

MPI_Get(A, 10, MPI_INT, 1, 0, 1, MPI_INT, win);

 A[0] = 4711;

MPI_Win_fence(0, win);

Valgrind with MPI…………..cont……..

Suppressing Error:

Specify pattern to not to be reported as alarm from valgrind:

References:

• http://icl.cs.utk.edu/open-mpi/faq/?category=debugging

• http://valgrind.org/docs/manual/manual.html

17

mpirun -np 2 valgrind –suppressions=$PREFIX/share/openmpi/openmpi-valgrind.supp

http://icl.cs.utk.edu/open-mpi/faq/?category=debugging
http://icl.cs.utk.edu/open-mpi/faq/?category=debugging

Lab:

• Run Sample Programs and check various Memcheck Errors

1. Memory leaks in sample pro

2. Illegal Read/Write

3. Uninitialized values

4. Illegal free

• Check the cachegrind output for sample program

1. Various cache sizes?

2. Which cache is missed most?

3. It is data miss or branching?

4. Speed up gained on optimizing for the cache?

Valgrind path = /opt/software/hpcapps/Tools/valgrind-3.8.1/bin/valgrind

18

Profiling Tools : Scalasca

Parallelization and Optimization Group
TATA Consultancy Services, SahyadriPark Pune, India

May 5, 2013

TATA Consultancy Services, Experience Certainity 1 c©All rights reserved

Agenda

1. Introduction to Scalasca

2. Phases in Scalasca

3. Analyzing Reports

TATA Consultancy Services, Experience Certainity 2 c©All rights reserved

Introduction to Scalasca:

Scalasca

1. SCalable Analysis of LArge SCale Applications

2. Capable of measuring and analyzing parallel program behavior during
execution

3. Supports measurement and analysis of the MPI, OpenMP and Hybrid
MPI+OpenMP

4. Supports HPC applications written in C, C++ and Fortran

TATA Consultancy Services, Experience Certainity 3 c©All rights reserved

Introduction to Scalasca:

Scalasca

1. SCalable Analysis of LArge SCale Applications

2. Capable of measuring and analyzing parallel program behavior during
execution

3. Supports measurement and analysis of the MPI, OpenMP and Hybrid
MPI+OpenMP

4. Supports HPC applications written in C, C++ and Fortran

Usage :

1. scalasca command with appropriate arguments.

TATA Consultancy Services, Experience Certainity 3 c©All rights reserved

Phases in Scalasca :

Use of Scalasca involves three phases:

1. Program Instrumentation

2. Execution Measurement Collection and Analysis

3. Analysis Report Examination

TATA Consultancy Services, Experience Certainity 4 c©All rights reserved

Phase 1 : Program Instrumentation

1. Used to make measurements

TATA Consultancy Services, Experience Certainity 5 c©All rights reserved

Phase 1 : Program Instrumentation

1. Used to make measurements

2. This phase is also called as skin

TATA Consultancy Services, Experience Certainity 5 c©All rights reserved

Phase 1 : Program Instrumentation

1. Used to make measurements

2. This phase is also called as skin

Usage :

◮ scalasca -instrument (or skin) compilation-commands [compiler flags]

TATA Consultancy Services, Experience Certainity 5 c©All rights reserved

Phase 1 : Program Instrumentation

1. Used to make measurements

2. This phase is also called as skin

Usage :

◮ scalasca -instrument (or skin) compilation-commands [compiler flags]

Example :

◮ scalasca -instrument mpicc mpi send.c -o mpi send or

◮ skin mpicc mpi send.c -o mpi send

TATA Consultancy Services, Experience Certainity 5 c©All rights reserved

Phase 2 : Execution Measurement Collection and Analysis

TATA Consultancy Services, Experience Certainity 6 c©All rights reserved

Phase 2 : Execution Measurement Collection and Analysis

1. This phase collects the run time information and stores in
epik XX XX XX folder used in third phase for analysis

TATA Consultancy Services, Experience Certainity 6 c©All rights reserved

Phase 2 : Execution Measurement Collection and Analysis

1. This phase collects the run time information and stores in
epik XX XX XX folder used in third phase for analysis

2. This phase is also called as scan

TATA Consultancy Services, Experience Certainity 6 c©All rights reserved

Phase 2 : Execution Measurement Collection and Analysis

1. This phase collects the run time information and stores in
epik XX XX XX folder used in third phase for analysis

2. This phase is also called as scan

The folder epik XX XX XX contains :

TATA Consultancy Services, Experience Certainity 6 c©All rights reserved

Phase 2 : Execution Measurement Collection and Analysis

1. This phase collects the run time information and stores in
epik XX XX XX folder used in third phase for analysis

2. This phase is also called as scan

The folder epik XX XX XX contains :

◮ epik.conf contains analysis measurement configuration details

◮ epik.log contains execution time logs

◮ epik.path contains execution path

◮ epitome.cube contains measurement information

TATA Consultancy Services, Experience Certainity 6 c©All rights reserved

Phase 2 : Execution Measurement Collection and Analysis

1. This phase collects the run time information and stores in
epik XX XX XX folder used in third phase for analysis

2. This phase is also called as scan

The folder epik XX XX XX contains :

◮ epik.conf contains analysis measurement configuration details

◮ epik.log contains execution time logs

◮ epik.path contains execution path

◮ epitome.cube contains measurement information

Usage :

◮ scalasca -analyze (or scan) execute command [compiler flags]
executable [args]

TATA Consultancy Services, Experience Certainity 6 c©All rights reserved

Phase 2 : Execution Measurement Collection and Analysis

1. This phase collects the run time information and stores in
epik XX XX XX folder used in third phase for analysis

2. This phase is also called as scan

The folder epik XX XX XX contains :

◮ epik.conf contains analysis measurement configuration details

◮ epik.log contains execution time logs

◮ epik.path contains execution path

◮ epitome.cube contains measurement information

Usage :

◮ scalasca -analyze (or scan) execute command [compiler flags]
executable [args]

Example :

◮ scalasca -analyze mpirun -np 4 ./mpi send or

◮ scan mpirun -np 4 ./mpi send

TATA Consultancy Services, Experience Certainity 6 c©All rights reserved

Phase 3 : Analysis Report Examination

TATA Consultancy Services, Experience Certainity 7 c©All rights reserved

Phase 3 : Analysis Report Examination

1. Uses epik XX XX XX folder contents to generate reports.

2. Two ways to generate reports

TATA Consultancy Services, Experience Certainity 7 c©All rights reserved

Phase 3 : Analysis Report Examination

1. Uses epik XX XX XX folder contents to generate reports.

2. Two ways to generate reports
◮ Textual Report
◮ Graphical User Interface

TATA Consultancy Services, Experience Certainity 7 c©All rights reserved

Phase 3 : Analysis Report Examination : Textual

TATA Consultancy Services, Experience Certainity 8 c©All rights reserved

Phase 3 : Analysis Report Examination : Textual
Uses epitome.cube file
Report contains following regions and are classified into

◮ ANY : Aggregate of all regions

◮ MPI : Pure MPI library functions

◮ OMP : Pure OpenMP functions/regions

◮ COM : Combined user regions calling OpenMP/MPI, directly or
indirectly

◮ USR : User regions with purely local computation not containing MPI
or OpenMP.

TATA Consultancy Services, Experience Certainity 8 c©All rights reserved

Phase 3 : Analysis Report Examination : Textual
Uses epitome.cube file
Report contains following regions and are classified into

◮ ANY : Aggregate of all regions

◮ MPI : Pure MPI library functions

◮ OMP : Pure OpenMP functions/regions

◮ COM : Combined user regions calling OpenMP/MPI, directly or
indirectly

◮ USR : User regions with purely local computation not containing MPI
or OpenMP.

Usage :

◮ cube3 score epik XX XX XX/epitome.cube

TATA Consultancy Services, Experience Certainity 8 c©All rights reserved

Phase 3 : Analysis Report Examination : Textual
Uses epitome.cube file
Report contains following regions and are classified into

◮ ANY : Aggregate of all regions

◮ MPI : Pure MPI library functions

◮ OMP : Pure OpenMP functions/regions

◮ COM : Combined user regions calling OpenMP/MPI, directly or
indirectly

◮ USR : User regions with purely local computation not containing MPI
or OpenMP.

Usage :

◮ cube3 score epik XX XX XX/epitome.cube

Example :

◮ cube3 score epik mpi send 4 sum/epitome.cube

TATA Consultancy Services, Experience Certainity 8 c©All rights reserved

Phase 3 : Analysis Report Examination : Textual

TATA Consultancy Services, Experience Certainity 9 c©All rights reserved

Phase 3 : Analysis Report Examination : Textual
Sample Report :

TATA Consultancy Services, Experience Certainity 9 c©All rights reserved

Phase 3 : Analysis Report Examination : Textual
Sample Report :

Figure: Textual Sample Report

◮ total tbc : Aggregate trace size

◮ max tbc : Largest process trace

TATA Consultancy Services, Experience Certainity 9 c©All rights reserved

Phase 3 : Analysis Report Examination : Graphical

1. Uses CUBE Viewer

2. This phase is also called as square

TATA Consultancy Services, Experience Certainity 10 c©All rights reserved

Phase 3 : Analysis Report Examination : Graphical

1. Uses CUBE Viewer

2. This phase is also called as square

Usage :

◮ scalasca -examine (or square) execute command [compiler flags]
executable [args]

TATA Consultancy Services, Experience Certainity 10 c©All rights reserved

Phase 3 : Analysis Report Examination : Graphical

1. Uses CUBE Viewer

2. This phase is also called as square

Usage :

◮ scalasca -examine (or square) execute command [compiler flags]
executable [args]

Example :

◮ scalasca -examine epik mpi send 4 sum or

◮ square epik mpi send 4 sum

TATA Consultancy Services, Experience Certainity 10 c©All rights reserved

Phase 3 : Analysis Report Examination : Graphical
Sample Report : Matrix Multiplication of size 512 x 512 using MPI

TATA Consultancy Services, Experience Certainity 11 c©All rights reserved

Phase 3 : Analysis Report Examination : Graphical
Sample Report : Matrix Multiplication of size 512 x 512 using MPI

Figure: Using 8 Processors
TATA Consultancy Services, Experience Certainity 11 c©All rights reserved

Phase 3 : Analysis Report Examination : Graphical
Sample Report : Matrix Multiplication of size 512 x 512 using OpenMP

Figure: Using 8 Threads
TATA Consultancy Services, Experience Certainity 12 c©All rights reserved

Analyzing Reports

TATA Consultancy Services, Experience Certainity 13 c©All rights reserved

Analyzing Reports
Simple MPI Send and MPI Recv Example

TATA Consultancy Services, Experience Certainity 13 c©All rights reserved

Analyzing Reports
Simple MPI Send and MPI Recv Example

i f (rank == 0)
de s t = 1 ;
outmsg = 100 ;
MPI Send(&outmsg , 1 ,MPI DOUBLE , dest , tag , xxx) ;

e l s e i f (rank == 1)
sou r c e = 0 ;
MPI Recv(&inmsg , 1 ,MPI DOUBLE , source , tag , xxx , xxx) ;

TATA Consultancy Services, Experience Certainity 13 c©All rights reserved

Analyzing Reports
Simple MPI Send and MPI Recv Example

i f (rank == 0)
de s t = 1 ;
outmsg = 100 ;
MPI Send(&outmsg , 1 ,MPI DOUBLE , dest , tag , xxx) ;

e l s e i f (rank == 1)
sou r c e = 0 ;
MPI Recv(&inmsg , 1 ,MPI DOUBLE , source , tag , xxx , xxx) ;

Compile and Execute using Scalasca :

◮ scalasca -instrument (or skin) mpicc mpi send.c -o mpi send

◮ scalasca -analyze (or scan) mpirun -np 4 ./mpi send

◮ scalasca -examine (or square) epik mpi send 4 sum (For Graphical)

◮ cube3 score epik mpi send 4 sum/epitome.cube (For Textual)

TATA Consultancy Services, Experience Certainity 13 c©All rights reserved

Analyzing Reports : Textual

TATA Consultancy Services, Experience Certainity 14 c©All rights reserved

Analyzing Reports : Textual

Figure: Textual Report

TATA Consultancy Services, Experience Certainity 14 c©All rights reserved

Analyzing Reports : Textual

TATA Consultancy Services, Experience Certainity 15 c©All rights reserved

Analyzing Reports : Textual
To see individual function call report

◮ square -s epik mpi send 4 sum

Figure: Textual Report - Individual Function Call
TATA Consultancy Services, Experience Certainity 15 c©All rights reserved

Analyzing Reports : Graphical

Figure: Graphical User Interface Report - main()

TATA Consultancy Services, Experience Certainity 16 c©All rights reserved

Thank You

TATA Consultancy Services, Experience Certainity 17 c©All rights reserved

Profiling Tools : gprof

Parallelization and Optimization Group
TATA Consultancy Services, SahyadriPark Pune, India

April 29, 2013

TATA Consultancy Services, Experience Certainity 1 c©All rights reserved

Introduction of Profilers:

Why profiling?

1. To understand program behaviour

2. Allows you to learn where your program spent its time

3. Which functions called which other functions while it was executing

TATA Consultancy Services, Experience Certainity 2 c©All rights reserved

Introduction of Profilers:

Why profiling?

1. To understand program behaviour

2. Allows you to learn where your program spent its time

3. Which functions called which other functions while it was executing

Profiler results may contains

1. Event-based

2. Statistical

3. Instrumented

4. Sampling

5. Simulation etc

TATA Consultancy Services, Experience Certainity 2 c©All rights reserved

Introduction of Profilers :

How to do ?

1. Compile and Link your program with profiling enabled

TATA Consultancy Services, Experience Certainity 3 c©All rights reserved

Introduction of Profilers :

How to do ?

1. Compile and Link your program with profiling enabled

2. Execute your program to generate a profile data file

TATA Consultancy Services, Experience Certainity 3 c©All rights reserved

GNU Profiler (gprof) :

Basic profiler in Linux and comes with OS.
How to Compile?

1. Use -pg flag in addition to your usual options
Usage :

TATA Consultancy Services, Experience Certainity 4 c©All rights reserved

GNU Profiler (gprof) :

Basic profiler in Linux and comes with OS.
How to Compile?

1. Use -pg flag in addition to your usual options
Usage : gcc -g hello.c -o hello

TATA Consultancy Services, Experience Certainity 4 c©All rights reserved

GNU Profiler (gprof) :

Basic profiler in Linux and comes with OS.
How to Compile?

1. Use -pg flag in addition to your usual options
Usage : gcc -g hello.c -o hello -pg

TATA Consultancy Services, Experience Certainity 4 c©All rights reserved

GNU Profiler (gprof) :

Basic profiler in Linux and comes with OS.
How to Compile?

1. Use -pg flag in addition to your usual options
Usage : gcc -g hello.c -o hello -pg

2. Execute your program. This generates gmon.out executable file
required by ’gprof’
Usage :

TATA Consultancy Services, Experience Certainity 4 c©All rights reserved

GNU Profiler (gprof) :

Basic profiler in Linux and comes with OS.
How to Compile?

1. Use -pg flag in addition to your usual options
Usage : gcc -g hello.c -o hello -pg

2. Execute your program. This generates gmon.out executable file
required by ’gprof’
Usage : ./hello

TATA Consultancy Services, Experience Certainity 4 c©All rights reserved

GNU Profiler (gprof) :

Basic profiler in Linux and comes with OS.
How to Compile?

1. Use -pg flag in addition to your usual options
Usage : gcc -g hello.c -o hello -pg

2. Execute your program. This generates gmon.out executable file
required by ’gprof’
Usage : ./hello

3. Now execute your program along with ’gprof’ to generate basic
profiler data
Usage :

TATA Consultancy Services, Experience Certainity 4 c©All rights reserved

GNU Profiler (gprof) :

Basic profiler in Linux and comes with OS.
How to Compile?

1. Use -pg flag in addition to your usual options
Usage : gcc -g hello.c -o hello -pg

2. Execute your program. This generates gmon.out executable file
required by ’gprof’
Usage : ./hello

3. Now execute your program along with ’gprof’ to generate basic
profiler data
Usage : gprof ./hello

TATA Consultancy Services, Experience Certainity 4 c©All rights reserved

GNU Profiler (gprof) :

Basic profiler in Linux and comes with OS.
How to Compile?

1. Use -pg flag in addition to your usual options
Usage : gcc -g hello.c -o hello -pg

2. Execute your program. This generates gmon.out executable file
required by ’gprof’
Usage : ./hello

3. Now execute your program along with ’gprof’ to generate basic
profiler data
Usage : gprof ./hello gmon.out

TATA Consultancy Services, Experience Certainity 4 c©All rights reserved

GNU Profiler (gprof) :

Basic profiler in Linux and comes with OS.
How to Compile?

1. Use -pg flag in addition to your usual options
Usage : gcc -g hello.c -o hello -pg

2. Execute your program. This generates gmon.out executable file
required by ’gprof’
Usage : ./hello

3. Now execute your program along with ’gprof’ to generate basic
profiler data
Usage : gprof ./hello gmon.out>profiler data

TATA Consultancy Services, Experience Certainity 4 c©All rights reserved

GNU Profiler (gprof) :

What is inside profiler data file?

TATA Consultancy Services, Experience Certainity 5 c©All rights reserved

GNU Profiler (gprof) :

What is inside profiler data file?
Contains Two Tables

TATA Consultancy Services, Experience Certainity 5 c©All rights reserved

GNU Profiler (gprof) :

What is inside profiler data file?
Contains Two Tables

1. Flat profile:
Shows the total amount of time your program spent executing each
function

TATA Consultancy Services, Experience Certainity 5 c©All rights reserved

GNU Profiler (gprof) :

What is inside profiler data file?
Contains Two Tables

1. Flat profile:
Shows the total amount of time your program spent executing each
function

2. Call graph:
Shows how much time was spent in each function and its children

TATA Consultancy Services, Experience Certainity 5 c©All rights reserved

GNU Profiler Example : Merge Sort

#i n c l u d e <s t d i o . h>
{
. . .
s o r t (A, s i z eA) ; // So r t Ar ray A
s o r t (B, s i z eB) ; // So r t Ar ray B
merge (A, B, s i zeA , s i z eB) ; //Merge two a r r a y s
. . .
}
s o r t () {
//Some Code
}
merge (){
//Some Code
}

TATA Consultancy Services, Experience Certainity 6 c©All rights reserved

Merge Sort : Flat Profile

Each sample count s as 0 .01 seconds .
no t ime accumulated

% cumu l a t i v e s e l f s e l f t o t a l
t ime seconds seconds c a l l s Ts/ c a l l Ts/ c a l l name
0 .00 0 .00 0 .00 2 0 .00 0 .00 s o r t
0 .00 0 .00 0 .00 1 0 .00 0 .00 merge

TATA Consultancy Services, Experience Certainity 7 c©All rights reserved

Merge Sort : Call Graph

g r a n u l a r i t y : each sample h i t c o v e r s 4 byte (s) no t ime

i ndex % t ime s e l f c h i l d r e n c a l l e d name
0 .00 0 .00 2/2 main [6]

[1] 0 . 0 0 .00 0 .00 2 s o r t [1]
−−−

0 .00 0 .00 1/1 main [6]
[2] 0 . 0 0 .00 0 .00 1 merge [2]
−−−

I ndex by f u n c t i o n name

[2] merge [1] s o r t

TATA Consultancy Services, Experience Certainity 8 c©All rights reserved

Thank You

TATA Consultancy Services, Experience Certainity 9 c©All rights reserved

1 Copyright © 2011 Tata Consultancy
Services Limited

MPI Parallel Environment - MPE

5/3/13

2

About MPE

• Tool for performance visualization of MPI
programs.

• Set of profiling libraries
• Compiler wrapper (mpecc & mpefc)
• Jumpshot: Logfile viewer
• Work with
• OpenMPI, LAM/MPI, MPICH-1, MPICH2
• Commercial MPI implementations available
on IBM's AIX, BG/L, BG/P, NEC SX-8, Cray
X1E, Cray XT4, HP-MPI

• The latest version is MPE2, mpe2-1.3.0

3

Using MPE

• mpecc filename.c –o filename –mpilog
• Mpirun –np <n_cpus> ./filename
• Successful execution creates
filename.clog2

• Convert it to slog2 format
• clog2TOslog2 filename.clog2
• Creates filename.slog2
• View this log file using jumpshot-4

4

Examples

• Using blocking Send & Recv
• Using non-blocking Isend & Irecv

Ran
k0

Ran
k1

Ran
k 2

Ran
k 3

Ran
k n-
1

5

Ring example with blocking send/recv

inittime = MPI_Wtime();

 if (taskid == 0)

{

MPI_Send(sendbuff,buffsize,MPI_DOUBLE,taskid+1,0,MPI_COMM_WORLD);

MPI_Recv(recvbuff,buffsize,MPI_DOUBLE,ntasks-

1,MPI_ANY_TAG,MPI_COMM_WORLD,&status);

recvtime = MPI_Wtime();

}

else if(taskid == ntasks-1)

{

MPI_Send(sendbuff,buffsize,MPI_DOUBLE,0,0,MPI_COMM_WORLD);

MPI_Recv(recvbuff,buffsize,MPI_DOUBLE,taskid-

1,MPI_ANY_TAG,MPI_COMM_WORLD,&status);

recvtime = MPI_Wtime();

}

else

{

MPI_Send(sendbuff,buffsize,MPI_DOUBLE,taskid+1,0,MPI_COMM_WORLD);

MPI_Recv(recvbuff,buffsize,MPI_DOUBLE,taskid-

1,MPI_ANY_TAG,MPI_COMM_WORLD,&status);

recvtime = MPI_Wtime();

}

MPI_Barrier(MPI_COMM_WORLD);

totaltime = MPI_Wtime() - inittime;

6

Ring example with non blocking
send/recv

inittime = MPI_Wtime();

if (taskid == 0)

{

 MPI_Isend(sendbuff,buffsize,MPI_DOUBLE,taskid+1,0,MPI_COMM_WORLD,&send_request);

 MPI_Irecv(recvbuff,buffsize,MPI_DOUBLE,ntasks-1,MPI_ANY_TAG,MPI_COMM_WORLD,&recv_request);

 recvtime = MPI_Wtime();

}

else if(taskid == ntasks-1)

{

 MPI_Isend(sendbuff,buffsize,MPI_DOUBLE,0,0,MPI_COMM_WORLD,&send_request);

 MPI_Irecv(recvbuff,buffsize,MPI_DOUBLE,taskid-1,MPI_ANY_TAG,MPI_COMM_WORLD,&recv_request);

 recvtime = MPI_Wtime();

}

else

{

 MPI_Isend(sendbuff,buffsize,MPI_DOUBLE,taskid+1,0,MPI_COMM_WORLD,&send_request);

 MPI_Irecv(recvbuff,buffsize,MPI_DOUBLE,taskid-1,MPI_ANY_TAG,MPI_COMM_WORLD,&recv_request);

 recvtime = MPI_Wtime();

}

MPI_Wait(&send_request,&status);

MPI_Wait(&recv_request,&status);

totaltime = MPI_Wtime() - inittime

7

Performance

• MPI Send and Recv
–Communication time : 0.000141 seconds

• MPI Isend and Irecv
–Communication time : 0.000092 seconds

8

Visualizing with Jumpshot

9

Statistics of chosen range

10

Histogram

11

Time line

12

Non blocking Send/Recv

13

Let’s add computation in
between Send and Recv

14

Blocking send recv

inittime = MPI_Wtime();

else

{

MPI_Send(sendbuff,buffsize,MPI_DOUBLE,taskid+1,0,MPI_COMM_WORLD);

for(I = 0; I < 100000; i++)

p += 22*44;

MPI_Recv(recvbuff,buffsize,MPI_DOUBLE,taskid-

1,MPI_ANY_TAG,MPI_COMM_WORLD,&status);

recvtime = MPI_Wtime();

}

MPI_Barrier(MPI_COMM_WORLD);

totaltime = MPI_Wtime() - inittime;

for(i=0;
i<100000; i++)
 p += 22 *
44;

15

Performance

• MPI Send and Recv
• Time : 0.000409 seconds

• MPI Isend and Irecv
• Time : 0.000087 seconds

16

Blocking send recv with computation

17

Non blocking send recv with
computation

18

Time window

19

Thank You !Thank You !

	Speed-Space tradeoff
	Speed-Space tradeoff
	Speed-Space tradeoff
	Speed-Space tradeoff
	Scheduling
	Optimization levels
	Optimization levels
	Optimization levels
	Agenda
	Introduction
	Basics
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

